LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
caxpy.f
Go to the documentation of this file.
1 *> \brief \b CAXPY
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE CAXPY(N,CA,CX,INCX,CY,INCY)
12 *
13 * .. Scalar Arguments ..
14 * COMPLEX CA
15 * INTEGER INCX,INCY,N
16 * ..
17 * .. Array Arguments ..
18 * COMPLEX CX(*),CY(*)
19 * ..
20 *
21 *
22 *> \par Purpose:
23 * =============
24 *>
25 *> \verbatim
26 *>
27 *> CAXPY constant times a vector plus a vector.
28 *> \endverbatim
29 *
30 * Authors:
31 * ========
32 *
33 *> \author Univ. of Tennessee
34 *> \author Univ. of California Berkeley
35 *> \author Univ. of Colorado Denver
36 *> \author NAG Ltd.
37 *
38 *> \date November 2011
39 *
40 *> \ingroup complex_blas_level1
41 *
42 *> \par Further Details:
43 * =====================
44 *>
45 *> \verbatim
46 *>
47 *> jack dongarra, linpack, 3/11/78.
48 *> modified 12/3/93, array(1) declarations changed to array(*)
49 *> \endverbatim
50 *>
51 * =====================================================================
52  SUBROUTINE caxpy(N,CA,CX,INCX,CY,INCY)
53 *
54 * -- Reference BLAS level1 routine (version 3.4.0) --
55 * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
56 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
57 * November 2011
58 *
59 * .. Scalar Arguments ..
60  COMPLEX ca
61  INTEGER incx,incy,n
62 * ..
63 * .. Array Arguments ..
64  COMPLEX cx(*),cy(*)
65 * ..
66 *
67 * =====================================================================
68 *
69 * .. Local Scalars ..
70  INTEGER i,ix,iy
71 * ..
72 * .. External Functions ..
73  REAL scabs1
74  EXTERNAL scabs1
75 * ..
76  IF (n.LE.0) return
77  IF (scabs1(ca).EQ.0.0e+0) return
78  IF (incx.EQ.1 .AND. incy.EQ.1) THEN
79 *
80 * code for both increments equal to 1
81 *
82  DO i = 1,n
83  cy(i) = cy(i) + ca*cx(i)
84  END DO
85  ELSE
86 *
87 * code for unequal increments or equal increments
88 * not equal to 1
89 *
90  ix = 1
91  iy = 1
92  IF (incx.LT.0) ix = (-n+1)*incx + 1
93  IF (incy.LT.0) iy = (-n+1)*incy + 1
94  DO i = 1,n
95  cy(iy) = cy(iy) + ca*cx(ix)
96  ix = ix + incx
97  iy = iy + incy
98  END DO
99  END IF
100 *
101  return
102  END