LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
dgerqs.f
Go to the documentation of this file.
1 *> \brief \b DGERQS
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE DGERQS( M, N, NRHS, A, LDA, TAU, B, LDB, WORK, LWORK,
12 * INFO )
13 *
14 * .. Scalar Arguments ..
15 * INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
16 * ..
17 * .. Array Arguments ..
18 * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), TAU( * ),
19 * $ WORK( LWORK )
20 * ..
21 *
22 *
23 *> \par Purpose:
24 * =============
25 *>
26 *> \verbatim
27 *>
28 *> Compute a minimum-norm solution
29 *> min || A*X - B ||
30 *> using the RQ factorization
31 *> A = R*Q
32 *> computed by DGERQF.
33 *> \endverbatim
34 *
35 * Arguments:
36 * ==========
37 *
38 *> \param[in] M
39 *> \verbatim
40 *> M is INTEGER
41 *> The number of rows of the matrix A. M >= 0.
42 *> \endverbatim
43 *>
44 *> \param[in] N
45 *> \verbatim
46 *> N is INTEGER
47 *> The number of columns of the matrix A. N >= M >= 0.
48 *> \endverbatim
49 *>
50 *> \param[in] NRHS
51 *> \verbatim
52 *> NRHS is INTEGER
53 *> The number of columns of B. NRHS >= 0.
54 *> \endverbatim
55 *>
56 *> \param[in] A
57 *> \verbatim
58 *> A is DOUBLE PRECISION array, dimension (LDA,N)
59 *> Details of the RQ factorization of the original matrix A as
60 *> returned by DGERQF.
61 *> \endverbatim
62 *>
63 *> \param[in] LDA
64 *> \verbatim
65 *> LDA is INTEGER
66 *> The leading dimension of the array A. LDA >= M.
67 *> \endverbatim
68 *>
69 *> \param[in] TAU
70 *> \verbatim
71 *> TAU is DOUBLE PRECISION array, dimension (M)
72 *> Details of the orthogonal matrix Q.
73 *> \endverbatim
74 *>
75 *> \param[in,out] B
76 *> \verbatim
77 *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
78 *> On entry, the right hand side vectors for the linear system.
79 *> On exit, the solution vectors X. Each solution vector
80 *> is contained in rows 1:N of a column of B.
81 *> \endverbatim
82 *>
83 *> \param[in] LDB
84 *> \verbatim
85 *> LDB is INTEGER
86 *> The leading dimension of the array B. LDB >= max(1,N).
87 *> \endverbatim
88 *>
89 *> \param[out] WORK
90 *> \verbatim
91 *> WORK is DOUBLE PRECISION array, dimension (LWORK)
92 *> \endverbatim
93 *>
94 *> \param[in] LWORK
95 *> \verbatim
96 *> LWORK is INTEGER
97 *> The length of the array WORK. LWORK must be at least NRHS,
98 *> and should be at least NRHS*NB, where NB is the block size
99 *> for this environment.
100 *> \endverbatim
101 *>
102 *> \param[out] INFO
103 *> \verbatim
104 *> INFO is INTEGER
105 *> = 0: successful exit
106 *> < 0: if INFO = -i, the i-th argument had an illegal value
107 *> \endverbatim
108 *
109 * Authors:
110 * ========
111 *
112 *> \author Univ. of Tennessee
113 *> \author Univ. of California Berkeley
114 *> \author Univ. of Colorado Denver
115 *> \author NAG Ltd.
116 *
117 *> \date November 2011
118 *
119 *> \ingroup double_lin
120 *
121 * =====================================================================
122  SUBROUTINE dgerqs( M, N, NRHS, A, LDA, TAU, B, LDB, WORK, LWORK,
123  $ info )
124 *
125 * -- LAPACK test routine (version 3.4.0) --
126 * -- LAPACK is a software package provided by Univ. of Tennessee, --
127 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
128 * November 2011
129 *
130 * .. Scalar Arguments ..
131  INTEGER info, lda, ldb, lwork, m, n, nrhs
132 * ..
133 * .. Array Arguments ..
134  DOUBLE PRECISION a( lda, * ), b( ldb, * ), tau( * ),
135  $ work( lwork )
136 * ..
137 *
138 * =====================================================================
139 *
140 * .. Parameters ..
141  DOUBLE PRECISION zero, one
142  parameter( zero = 0.0d+0, one = 1.0d+0 )
143 * ..
144 * .. External Subroutines ..
145  EXTERNAL dlaset, dormrq, dtrsm, xerbla
146 * ..
147 * .. Intrinsic Functions ..
148  INTRINSIC max
149 * ..
150 * .. Executable Statements ..
151 *
152 * Test the input parameters.
153 *
154  info = 0
155  IF( m.LT.0 ) THEN
156  info = -1
157  ELSE IF( n.LT.0 .OR. m.GT.n ) THEN
158  info = -2
159  ELSE IF( nrhs.LT.0 ) THEN
160  info = -3
161  ELSE IF( lda.LT.max( 1, m ) ) THEN
162  info = -5
163  ELSE IF( ldb.LT.max( 1, n ) ) THEN
164  info = -8
165  ELSE IF( lwork.LT.1 .OR. lwork.LT.nrhs .AND. m.GT.0 .AND. n.GT.0 )
166  $ THEN
167  info = -10
168  END IF
169  IF( info.NE.0 ) THEN
170  CALL xerbla( 'DGERQS', -info )
171  return
172  END IF
173 *
174 * Quick return if possible
175 *
176  IF( n.EQ.0 .OR. nrhs.EQ.0 .OR. m.EQ.0 )
177  $ return
178 *
179 * Solve R*X = B(n-m+1:n,:)
180 *
181  CALL dtrsm( 'Left', 'Upper', 'No transpose', 'Non-unit', m, nrhs,
182  $ one, a( 1, n-m+1 ), lda, b( n-m+1, 1 ), ldb )
183 *
184 * Set B(1:n-m,:) to zero
185 *
186  CALL dlaset( 'Full', n-m, nrhs, zero, zero, b, ldb )
187 *
188 * B := Q' * B
189 *
190  CALL dormrq( 'Left', 'Transpose', n, nrhs, m, a, lda, tau, b, ldb,
191  $ work, lwork, info )
192 *
193  return
194 *
195 * End of DGERQS
196 *
197  END