LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
cgeqrt.f
Go to the documentation of this file.
1 *> \brief \b CGEQRT
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download CGEQRT + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeqrt.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeqrt.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeqrt.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE CGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO )
22 *
23 * .. Scalar Arguments ..
24 * INTEGER INFO, LDA, LDT, M, N, NB
25 * ..
26 * .. Array Arguments ..
27 * COMPLEX A( LDA, * ), T( LDT, * ), WORK( * )
28 * ..
29 *
30 *
31 *> \par Purpose:
32 * =============
33 *>
34 *> \verbatim
35 *>
36 *> CGEQRT computes a blocked QR factorization of a complex M-by-N matrix A
37 *> using the compact WY representation of Q.
38 *> \endverbatim
39 *
40 * Arguments:
41 * ==========
42 *
43 *> \param[in] M
44 *> \verbatim
45 *> M is INTEGER
46 *> The number of rows of the matrix A. M >= 0.
47 *> \endverbatim
48 *>
49 *> \param[in] N
50 *> \verbatim
51 *> N is INTEGER
52 *> The number of columns of the matrix A. N >= 0.
53 *> \endverbatim
54 *>
55 *> \param[in] NB
56 *> \verbatim
57 *> NB is INTEGER
58 *> The block size to be used in the blocked QR. MIN(M,N) >= NB >= 1.
59 *> \endverbatim
60 *>
61 *> \param[in,out] A
62 *> \verbatim
63 *> A is COMPLEX array, dimension (LDA,N)
64 *> On entry, the M-by-N matrix A.
65 *> On exit, the elements on and above the diagonal of the array
66 *> contain the min(M,N)-by-N upper trapezoidal matrix R (R is
67 *> upper triangular if M >= N); the elements below the diagonal
68 *> are the columns of V.
69 *> \endverbatim
70 *>
71 *> \param[in] LDA
72 *> \verbatim
73 *> LDA is INTEGER
74 *> The leading dimension of the array A. LDA >= max(1,M).
75 *> \endverbatim
76 *>
77 *> \param[out] T
78 *> \verbatim
79 *> T is COMPLEX array, dimension (LDT,MIN(M,N))
80 *> The upper triangular block reflectors stored in compact form
81 *> as a sequence of upper triangular blocks. See below
82 *> for further details.
83 *> \endverbatim
84 *>
85 *> \param[in] LDT
86 *> \verbatim
87 *> LDT is INTEGER
88 *> The leading dimension of the array T. LDT >= NB.
89 *> \endverbatim
90 *>
91 *> \param[out] WORK
92 *> \verbatim
93 *> WORK is COMPLEX array, dimension (NB*N)
94 *> \endverbatim
95 *>
96 *> \param[out] INFO
97 *> \verbatim
98 *> INFO is INTEGER
99 *> = 0: successful exit
100 *> < 0: if INFO = -i, the i-th argument had an illegal value
101 *> \endverbatim
102 *
103 * Authors:
104 * ========
105 *
106 *> \author Univ. of Tennessee
107 *> \author Univ. of California Berkeley
108 *> \author Univ. of Colorado Denver
109 *> \author NAG Ltd.
110 *
111 *> \date November 2011
112 *
113 *> \ingroup complexGEcomputational
114 *
115 *> \par Further Details:
116 * =====================
117 *>
118 *> \verbatim
119 *>
120 *> The matrix V stores the elementary reflectors H(i) in the i-th column
121 *> below the diagonal. For example, if M=5 and N=3, the matrix V is
122 *>
123 *> V = ( 1 )
124 *> ( v1 1 )
125 *> ( v1 v2 1 )
126 *> ( v1 v2 v3 )
127 *> ( v1 v2 v3 )
128 *>
129 *> where the vi's represent the vectors which define H(i), which are returned
130 *> in the matrix A. The 1's along the diagonal of V are not stored in A.
131 *>
132 *> Let K=MIN(M,N). The number of blocks is B = ceiling(K/NB), where each
133 *> block is of order NB except for the last block, which is of order
134 *> IB = K - (B-1)*NB. For each of the B blocks, a upper triangular block
135 *> reflector factor is computed: T1, T2, ..., TB. The NB-by-NB (and IB-by-IB
136 *> for the last block) T's are stored in the NB-by-N matrix T as
137 *>
138 *> T = (T1 T2 ... TB).
139 *> \endverbatim
140 *>
141 * =====================================================================
142  SUBROUTINE cgeqrt( M, N, NB, A, LDA, T, LDT, WORK, INFO )
143 *
144 * -- LAPACK computational routine (version 3.4.0) --
145 * -- LAPACK is a software package provided by Univ. of Tennessee, --
146 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
147 * November 2011
148 *
149 * .. Scalar Arguments ..
150  INTEGER info, lda, ldt, m, n, nb
151 * ..
152 * .. Array Arguments ..
153  COMPLEX a( lda, * ), t( ldt, * ), work( * )
154 * ..
155 *
156 * =====================================================================
157 *
158 * ..
159 * .. Local Scalars ..
160  INTEGER i, ib, iinfo, k
161  LOGICAL use_recursive_qr
162  parameter( use_recursive_qr=.true. )
163 * ..
164 * .. External Subroutines ..
165  EXTERNAL cgeqrt2, cgeqrt3, clarfb, xerbla
166 * ..
167 * .. Executable Statements ..
168 *
169 * Test the input arguments
170 *
171  info = 0
172  IF( m.LT.0 ) THEN
173  info = -1
174  ELSE IF( n.LT.0 ) THEN
175  info = -2
176  ELSE IF( nb.LT.1 .OR. nb.GT.min(m,n) ) THEN
177  info = -3
178  ELSE IF( lda.LT.max( 1, m ) ) THEN
179  info = -5
180  ELSE IF( ldt.LT.nb ) THEN
181  info = -7
182  END IF
183  IF( info.NE.0 ) THEN
184  CALL xerbla( 'CGEQRT', -info )
185  return
186  END IF
187 *
188 * Quick return if possible
189 *
190  k = min( m, n )
191  IF( k.EQ.0 ) return
192 *
193 * Blocked loop of length K
194 *
195  DO i = 1, k, nb
196  ib = min( k-i+1, nb )
197 *
198 * Compute the QR factorization of the current block A(I:M,I:I+IB-1)
199 *
200  IF( use_recursive_qr ) THEN
201  CALL cgeqrt3( m-i+1, ib, a(i,i), lda, t(1,i), ldt, iinfo )
202  ELSE
203  CALL cgeqrt2( m-i+1, ib, a(i,i), lda, t(1,i), ldt, iinfo )
204  END IF
205  IF( i+ib.LE.n ) THEN
206 *
207 * Update by applying H**H to A(I:M,I+IB:N) from the left
208 *
209  CALL clarfb( 'L', 'C', 'F', 'C', m-i+1, n-i-ib+1, ib,
210  $ a( i, i ), lda, t( 1, i ), ldt,
211  $ a( i, i+ib ), lda, work , n-i-ib+1 )
212  END IF
213  END DO
214  return
215 *
216 * End of CGEQRT
217 *
218  END