LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
cpocon.f
Go to the documentation of this file.
1 *> \brief \b CPOCON
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download CPOCON + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpocon.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpocon.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpocon.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE CPOCON( UPLO, N, A, LDA, ANORM, RCOND, WORK, RWORK,
22 * INFO )
23 *
24 * .. Scalar Arguments ..
25 * CHARACTER UPLO
26 * INTEGER INFO, LDA, N
27 * REAL ANORM, RCOND
28 * ..
29 * .. Array Arguments ..
30 * REAL RWORK( * )
31 * COMPLEX A( LDA, * ), WORK( * )
32 * ..
33 *
34 *
35 *> \par Purpose:
36 * =============
37 *>
38 *> \verbatim
39 *>
40 *> CPOCON estimates the reciprocal of the condition number (in the
41 *> 1-norm) of a complex Hermitian positive definite matrix using the
42 *> Cholesky factorization A = U**H*U or A = L*L**H computed by CPOTRF.
43 *>
44 *> An estimate is obtained for norm(inv(A)), and the reciprocal of the
45 *> condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
46 *> \endverbatim
47 *
48 * Arguments:
49 * ==========
50 *
51 *> \param[in] UPLO
52 *> \verbatim
53 *> UPLO is CHARACTER*1
54 *> = 'U': Upper triangle of A is stored;
55 *> = 'L': Lower triangle of A is stored.
56 *> \endverbatim
57 *>
58 *> \param[in] N
59 *> \verbatim
60 *> N is INTEGER
61 *> The order of the matrix A. N >= 0.
62 *> \endverbatim
63 *>
64 *> \param[in] A
65 *> \verbatim
66 *> A is COMPLEX array, dimension (LDA,N)
67 *> The triangular factor U or L from the Cholesky factorization
68 *> A = U**H*U or A = L*L**H, as computed by CPOTRF.
69 *> \endverbatim
70 *>
71 *> \param[in] LDA
72 *> \verbatim
73 *> LDA is INTEGER
74 *> The leading dimension of the array A. LDA >= max(1,N).
75 *> \endverbatim
76 *>
77 *> \param[in] ANORM
78 *> \verbatim
79 *> ANORM is REAL
80 *> The 1-norm (or infinity-norm) of the Hermitian matrix A.
81 *> \endverbatim
82 *>
83 *> \param[out] RCOND
84 *> \verbatim
85 *> RCOND is REAL
86 *> The reciprocal of the condition number of the matrix A,
87 *> computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
88 *> estimate of the 1-norm of inv(A) computed in this routine.
89 *> \endverbatim
90 *>
91 *> \param[out] WORK
92 *> \verbatim
93 *> WORK is COMPLEX array, dimension (2*N)
94 *> \endverbatim
95 *>
96 *> \param[out] RWORK
97 *> \verbatim
98 *> RWORK is REAL array, dimension (N)
99 *> \endverbatim
100 *>
101 *> \param[out] INFO
102 *> \verbatim
103 *> INFO is INTEGER
104 *> = 0: successful exit
105 *> < 0: if INFO = -i, the i-th argument had an illegal value
106 *> \endverbatim
107 *
108 * Authors:
109 * ========
110 *
111 *> \author Univ. of Tennessee
112 *> \author Univ. of California Berkeley
113 *> \author Univ. of Colorado Denver
114 *> \author NAG Ltd.
115 *
116 *> \date November 2011
117 *
118 *> \ingroup complexPOcomputational
119 *
120 * =====================================================================
121  SUBROUTINE cpocon( UPLO, N, A, LDA, ANORM, RCOND, WORK, RWORK,
122  $ info )
123 *
124 * -- LAPACK computational routine (version 3.4.0) --
125 * -- LAPACK is a software package provided by Univ. of Tennessee, --
126 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
127 * November 2011
128 *
129 * .. Scalar Arguments ..
130  CHARACTER uplo
131  INTEGER info, lda, n
132  REAL anorm, rcond
133 * ..
134 * .. Array Arguments ..
135  REAL rwork( * )
136  COMPLEX a( lda, * ), work( * )
137 * ..
138 *
139 * =====================================================================
140 *
141 * .. Parameters ..
142  REAL one, zero
143  parameter( one = 1.0e+0, zero = 0.0e+0 )
144 * ..
145 * .. Local Scalars ..
146  LOGICAL upper
147  CHARACTER normin
148  INTEGER ix, kase
149  REAL ainvnm, scale, scalel, scaleu, smlnum
150  COMPLEX zdum
151 * ..
152 * .. Local Arrays ..
153  INTEGER isave( 3 )
154 * ..
155 * .. External Functions ..
156  LOGICAL lsame
157  INTEGER icamax
158  REAL slamch
159  EXTERNAL lsame, icamax, slamch
160 * ..
161 * .. External Subroutines ..
162  EXTERNAL clacn2, clatrs, csrscl, xerbla
163 * ..
164 * .. Intrinsic Functions ..
165  INTRINSIC abs, aimag, max, real
166 * ..
167 * .. Statement Functions ..
168  REAL cabs1
169 * ..
170 * .. Statement Function definitions ..
171  cabs1( zdum ) = abs( REAL( ZDUM ) ) + abs( aimag( zdum ) )
172 * ..
173 * .. Executable Statements ..
174 *
175 * Test the input parameters.
176 *
177  info = 0
178  upper = lsame( uplo, 'U' )
179  IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
180  info = -1
181  ELSE IF( n.LT.0 ) THEN
182  info = -2
183  ELSE IF( lda.LT.max( 1, n ) ) THEN
184  info = -4
185  ELSE IF( anorm.LT.zero ) THEN
186  info = -5
187  END IF
188  IF( info.NE.0 ) THEN
189  CALL xerbla( 'CPOCON', -info )
190  return
191  END IF
192 *
193 * Quick return if possible
194 *
195  rcond = zero
196  IF( n.EQ.0 ) THEN
197  rcond = one
198  return
199  ELSE IF( anorm.EQ.zero ) THEN
200  return
201  END IF
202 *
203  smlnum = slamch( 'Safe minimum' )
204 *
205 * Estimate the 1-norm of inv(A).
206 *
207  kase = 0
208  normin = 'N'
209  10 continue
210  CALL clacn2( n, work( n+1 ), work, ainvnm, kase, isave )
211  IF( kase.NE.0 ) THEN
212  IF( upper ) THEN
213 *
214 * Multiply by inv(U**H).
215 *
216  CALL clatrs( 'Upper', 'Conjugate transpose', 'Non-unit',
217  $ normin, n, a, lda, work, scalel, rwork, info )
218  normin = 'Y'
219 *
220 * Multiply by inv(U).
221 *
222  CALL clatrs( 'Upper', 'No transpose', 'Non-unit', normin, n,
223  $ a, lda, work, scaleu, rwork, info )
224  ELSE
225 *
226 * Multiply by inv(L).
227 *
228  CALL clatrs( 'Lower', 'No transpose', 'Non-unit', normin, n,
229  $ a, lda, work, scalel, rwork, info )
230  normin = 'Y'
231 *
232 * Multiply by inv(L**H).
233 *
234  CALL clatrs( 'Lower', 'Conjugate transpose', 'Non-unit',
235  $ normin, n, a, lda, work, scaleu, rwork, info )
236  END IF
237 *
238 * Multiply by 1/SCALE if doing so will not cause overflow.
239 *
240  scale = scalel*scaleu
241  IF( scale.NE.one ) THEN
242  ix = icamax( n, work, 1 )
243  IF( scale.LT.cabs1( work( ix ) )*smlnum .OR. scale.EQ.zero )
244  $ go to 20
245  CALL csrscl( n, scale, work, 1 )
246  END IF
247  go to 10
248  END IF
249 *
250 * Compute the estimate of the reciprocal condition number.
251 *
252  IF( ainvnm.NE.zero )
253  $ rcond = ( one / ainvnm ) / anorm
254 *
255  20 continue
256  return
257 *
258 * End of CPOCON
259 *
260  END