LAPACK
3.4.2
LAPACK: Linear Algebra PACKage
Main Page
Modules
Files
File List
File Members
All
Files
Functions
Groups
dpptrs.f
Go to the documentation of this file.
1
*> \brief \b DPPTRS
2
*
3
* =========== DOCUMENTATION ===========
4
*
5
* Online html documentation available at
6
* http://www.netlib.org/lapack/explore-html/
7
*
8
*> \htmlonly
9
*> Download DPPTRS + dependencies
10
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpptrs.f">
11
*> [TGZ]</a>
12
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpptrs.f">
13
*> [ZIP]</a>
14
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpptrs.f">
15
*> [TXT]</a>
16
*> \endhtmlonly
17
*
18
* Definition:
19
* ===========
20
*
21
* SUBROUTINE DPPTRS( UPLO, N, NRHS, AP, B, LDB, INFO )
22
*
23
* .. Scalar Arguments ..
24
* CHARACTER UPLO
25
* INTEGER INFO, LDB, N, NRHS
26
* ..
27
* .. Array Arguments ..
28
* DOUBLE PRECISION AP( * ), B( LDB, * )
29
* ..
30
*
31
*
32
*> \par Purpose:
33
* =============
34
*>
35
*> \verbatim
36
*>
37
*> DPPTRS solves a system of linear equations A*X = B with a symmetric
38
*> positive definite matrix A in packed storage using the Cholesky
39
*> factorization A = U**T*U or A = L*L**T computed by DPPTRF.
40
*> \endverbatim
41
*
42
* Arguments:
43
* ==========
44
*
45
*> \param[in] UPLO
46
*> \verbatim
47
*> UPLO is CHARACTER*1
48
*> = 'U': Upper triangle of A is stored;
49
*> = 'L': Lower triangle of A is stored.
50
*> \endverbatim
51
*>
52
*> \param[in] N
53
*> \verbatim
54
*> N is INTEGER
55
*> The order of the matrix A. N >= 0.
56
*> \endverbatim
57
*>
58
*> \param[in] NRHS
59
*> \verbatim
60
*> NRHS is INTEGER
61
*> The number of right hand sides, i.e., the number of columns
62
*> of the matrix B. NRHS >= 0.
63
*> \endverbatim
64
*>
65
*> \param[in] AP
66
*> \verbatim
67
*> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
68
*> The triangular factor U or L from the Cholesky factorization
69
*> A = U**T*U or A = L*L**T, packed columnwise in a linear
70
*> array. The j-th column of U or L is stored in the array AP
71
*> as follows:
72
*> if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
73
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
74
*> \endverbatim
75
*>
76
*> \param[in,out] B
77
*> \verbatim
78
*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
79
*> On entry, the right hand side matrix B.
80
*> On exit, the solution matrix X.
81
*> \endverbatim
82
*>
83
*> \param[in] LDB
84
*> \verbatim
85
*> LDB is INTEGER
86
*> The leading dimension of the array B. LDB >= max(1,N).
87
*> \endverbatim
88
*>
89
*> \param[out] INFO
90
*> \verbatim
91
*> INFO is INTEGER
92
*> = 0: successful exit
93
*> < 0: if INFO = -i, the i-th argument had an illegal value
94
*> \endverbatim
95
*
96
* Authors:
97
* ========
98
*
99
*> \author Univ. of Tennessee
100
*> \author Univ. of California Berkeley
101
*> \author Univ. of Colorado Denver
102
*> \author NAG Ltd.
103
*
104
*> \date November 2011
105
*
106
*> \ingroup doubleOTHERcomputational
107
*
108
* =====================================================================
109
SUBROUTINE
dpptrs
( UPLO, N, NRHS, AP, B, LDB, INFO )
110
*
111
* -- LAPACK computational routine (version 3.4.0) --
112
* -- LAPACK is a software package provided by Univ. of Tennessee, --
113
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
114
* November 2011
115
*
116
* .. Scalar Arguments ..
117
CHARACTER
uplo
118
INTEGER
info, ldb, n, nrhs
119
* ..
120
* .. Array Arguments ..
121
DOUBLE PRECISION
ap( * ), b( ldb, * )
122
* ..
123
*
124
* =====================================================================
125
*
126
* .. Local Scalars ..
127
LOGICAL
upper
128
INTEGER
i
129
* ..
130
* .. External Functions ..
131
LOGICAL
lsame
132
EXTERNAL
lsame
133
* ..
134
* .. External Subroutines ..
135
EXTERNAL
dtpsv
,
xerbla
136
* ..
137
* .. Intrinsic Functions ..
138
INTRINSIC
max
139
* ..
140
* .. Executable Statements ..
141
*
142
* Test the input parameters.
143
*
144
info = 0
145
upper =
lsame
( uplo,
'U'
)
146
IF
( .NOT.upper .AND. .NOT.
lsame
( uplo,
'L'
) )
THEN
147
info = -1
148
ELSE
IF
( n.LT.0 )
THEN
149
info = -2
150
ELSE
IF
( nrhs.LT.0 )
THEN
151
info = -3
152
ELSE
IF
( ldb.LT.max( 1, n ) )
THEN
153
info = -6
154
END IF
155
IF
( info.NE.0 )
THEN
156
CALL
xerbla
(
'DPPTRS'
, -info )
157
return
158
END IF
159
*
160
* Quick return if possible
161
*
162
IF
( n.EQ.0 .OR. nrhs.EQ.0 )
163
$ return
164
*
165
IF
( upper )
THEN
166
*
167
* Solve A*X = B where A = U**T * U.
168
*
169
DO
10 i = 1, nrhs
170
*
171
* Solve U**T *X = B, overwriting B with X.
172
*
173
CALL
dtpsv
(
'Upper'
,
'Transpose'
,
'Non-unit'
, n, ap,
174
$ b( 1, i ), 1 )
175
*
176
* Solve U*X = B, overwriting B with X.
177
*
178
CALL
dtpsv
(
'Upper'
,
'No transpose'
,
'Non-unit'
, n, ap,
179
$ b( 1, i ), 1 )
180
10 continue
181
ELSE
182
*
183
* Solve A*X = B where A = L * L**T.
184
*
185
DO
20 i = 1, nrhs
186
*
187
* Solve L*Y = B, overwriting B with X.
188
*
189
CALL
dtpsv
(
'Lower'
,
'No transpose'
,
'Non-unit'
, n, ap,
190
$ b( 1, i ), 1 )
191
*
192
* Solve L**T *X = Y, overwriting B with X.
193
*
194
CALL
dtpsv
(
'Lower'
,
'Transpose'
,
'Non-unit'
, n, ap,
195
$ b( 1, i ), 1 )
196
20 continue
197
END IF
198
*
199
return
200
*
201
* End of DPPTRS
202
*
203
END
SRC
dpptrs.f
Generated on Tue Sep 25 2012 16:27:41 for LAPACK by
1.8.1.1