LAPACK  3.4.2 LAPACK: Linear Algebra PACKage
zchkst.f
Go to the documentation of this file.
1 *> \brief \b ZCHKST
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE ZCHKST( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
12 * NOUNIT, A, LDA, AP, SD, SE, D1, D2, D3, D4, D5,
13 * WA1, WA2, WA3, WR, U, LDU, V, VP, TAU, Z, WORK,
14 * LWORK, RWORK, LRWORK, IWORK, LIWORK, RESULT,
15 * INFO )
16 *
17 * .. Scalar Arguments ..
18 * INTEGER INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT,
19 * \$ NSIZES, NTYPES
20 * DOUBLE PRECISION THRESH
21 * ..
22 * .. Array Arguments ..
23 * LOGICAL DOTYPE( * )
24 * INTEGER ISEED( 4 ), IWORK( * ), NN( * )
25 * DOUBLE PRECISION D1( * ), D2( * ), D3( * ), D4( * ), D5( * ),
26 * \$ RESULT( * ), RWORK( * ), SD( * ), SE( * ),
27 * \$ WA1( * ), WA2( * ), WA3( * ), WR( * )
28 * COMPLEX*16 A( LDA, * ), AP( * ), TAU( * ), U( LDU, * ),
29 * \$ V( LDU, * ), VP( * ), WORK( * ), Z( LDU, * )
30 * ..
31 *
32 *
33 *> \par Purpose:
34 * =============
35 *>
36 *> \verbatim
37 *>
38 *> ZCHKST checks the Hermitian eigenvalue problem routines.
39 *>
40 *> ZHETRD factors A as U S U* , where * means conjugate transpose,
41 *> S is real symmetric tridiagonal, and U is unitary.
42 *> ZHETRD can use either just the lower or just the upper triangle
43 *> of A; ZCHKST checks both cases.
44 *> U is represented as a product of Householder
45 *> transformations, whose vectors are stored in the first
46 *> n-1 columns of V, and whose scale factors are in TAU.
47 *>
48 *> ZHPTRD does the same as ZHETRD, except that A and V are stored
49 *> in "packed" format.
50 *>
51 *> ZUNGTR constructs the matrix U from the contents of V and TAU.
52 *>
53 *> ZUPGTR constructs the matrix U from the contents of VP and TAU.
54 *>
55 *> ZSTEQR factors S as Z D1 Z* , where Z is the unitary
56 *> matrix of eigenvectors and D1 is a diagonal matrix with
57 *> the eigenvalues on the diagonal. D2 is the matrix of
58 *> eigenvalues computed when Z is not computed.
59 *>
60 *> DSTERF computes D3, the matrix of eigenvalues, by the
61 *> PWK method, which does not yield eigenvectors.
62 *>
63 *> ZPTEQR factors S as Z4 D4 Z4* , for a
64 *> Hermitian positive definite tridiagonal matrix.
65 *> D5 is the matrix of eigenvalues computed when Z is not
66 *> computed.
67 *>
68 *> DSTEBZ computes selected eigenvalues. WA1, WA2, and
69 *> WA3 will denote eigenvalues computed to high
70 *> absolute accuracy, with different range options.
71 *> WR will denote eigenvalues computed to high relative
72 *> accuracy.
73 *>
74 *> ZSTEIN computes Y, the eigenvectors of S, given the
75 *> eigenvalues.
76 *>
77 *> ZSTEDC factors S as Z D1 Z* , where Z is the unitary
78 *> matrix of eigenvectors and D1 is a diagonal matrix with
79 *> the eigenvalues on the diagonal ('I' option). It may also
80 *> update an input unitary matrix, usually the output
81 *> from ZHETRD/ZUNGTR or ZHPTRD/ZUPGTR ('V' option). It may
82 *> also just compute eigenvalues ('N' option).
83 *>
84 *> ZSTEMR factors S as Z D1 Z* , where Z is the unitary
85 *> matrix of eigenvectors and D1 is a diagonal matrix with
86 *> the eigenvalues on the diagonal ('I' option). ZSTEMR
87 *> uses the Relatively Robust Representation whenever possible.
88 *>
89 *> When ZCHKST is called, a number of matrix "sizes" ("n's") and a
90 *> number of matrix "types" are specified. For each size ("n")
91 *> and each type of matrix, one matrix will be generated and used
92 *> to test the Hermitian eigenroutines. For each matrix, a number
93 *> of tests will be performed:
94 *>
95 *> (1) | A - V S V* | / ( |A| n ulp ) ZHETRD( UPLO='U', ... )
96 *>
97 *> (2) | I - UV* | / ( n ulp ) ZUNGTR( UPLO='U', ... )
98 *>
99 *> (3) | A - V S V* | / ( |A| n ulp ) ZHETRD( UPLO='L', ... )
100 *>
101 *> (4) | I - UV* | / ( n ulp ) ZUNGTR( UPLO='L', ... )
102 *>
103 *> (5-8) Same as 1-4, but for ZHPTRD and ZUPGTR.
104 *>
105 *> (9) | S - Z D Z* | / ( |S| n ulp ) ZSTEQR('V',...)
106 *>
107 *> (10) | I - ZZ* | / ( n ulp ) ZSTEQR('V',...)
108 *>
109 *> (11) | D1 - D2 | / ( |D1| ulp ) ZSTEQR('N',...)
110 *>
111 *> (12) | D1 - D3 | / ( |D1| ulp ) DSTERF
112 *>
113 *> (13) 0 if the true eigenvalues (computed by sturm count)
114 *> of S are within THRESH of
115 *> those in D1. 2*THRESH if they are not. (Tested using
116 *> DSTECH)
117 *>
118 *> For S positive definite,
119 *>
120 *> (14) | S - Z4 D4 Z4* | / ( |S| n ulp ) ZPTEQR('V',...)
121 *>
122 *> (15) | I - Z4 Z4* | / ( n ulp ) ZPTEQR('V',...)
123 *>
124 *> (16) | D4 - D5 | / ( 100 |D4| ulp ) ZPTEQR('N',...)
125 *>
126 *> When S is also diagonally dominant by the factor gamma < 1,
127 *>
128 *> (17) max | D4(i) - WR(i) | / ( |D4(i)| omega ) ,
129 *> i
130 *> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
131 *> DSTEBZ( 'A', 'E', ...)
132 *>
133 *> (18) | WA1 - D3 | / ( |D3| ulp ) DSTEBZ( 'A', 'E', ...)
134 *>
135 *> (19) ( max { min | WA2(i)-WA3(j) | } +
136 *> i j
137 *> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
138 *> i j
139 *> DSTEBZ( 'I', 'E', ...)
140 *>
141 *> (20) | S - Y WA1 Y* | / ( |S| n ulp ) DSTEBZ, ZSTEIN
142 *>
143 *> (21) | I - Y Y* | / ( n ulp ) DSTEBZ, ZSTEIN
144 *>
145 *> (22) | S - Z D Z* | / ( |S| n ulp ) ZSTEDC('I')
146 *>
147 *> (23) | I - ZZ* | / ( n ulp ) ZSTEDC('I')
148 *>
149 *> (24) | S - Z D Z* | / ( |S| n ulp ) ZSTEDC('V')
150 *>
151 *> (25) | I - ZZ* | / ( n ulp ) ZSTEDC('V')
152 *>
153 *> (26) | D1 - D2 | / ( |D1| ulp ) ZSTEDC('V') and
154 *> ZSTEDC('N')
155 *>
156 *> Test 27 is disabled at the moment because ZSTEMR does not
157 *> guarantee high relatvie accuracy.
158 *>
159 *> (27) max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
160 *> i
161 *> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
162 *> ZSTEMR('V', 'A')
163 *>
164 *> (28) max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
165 *> i
166 *> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
167 *> ZSTEMR('V', 'I')
168 *>
169 *> Tests 29 through 34 are disable at present because ZSTEMR
170 *> does not handle partial specturm requests.
171 *>
172 *> (29) | S - Z D Z* | / ( |S| n ulp ) ZSTEMR('V', 'I')
173 *>
174 *> (30) | I - ZZ* | / ( n ulp ) ZSTEMR('V', 'I')
175 *>
176 *> (31) ( max { min | WA2(i)-WA3(j) | } +
177 *> i j
178 *> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
179 *> i j
180 *> ZSTEMR('N', 'I') vs. CSTEMR('V', 'I')
181 *>
182 *> (32) | S - Z D Z* | / ( |S| n ulp ) ZSTEMR('V', 'V')
183 *>
184 *> (33) | I - ZZ* | / ( n ulp ) ZSTEMR('V', 'V')
185 *>
186 *> (34) ( max { min | WA2(i)-WA3(j) | } +
187 *> i j
188 *> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
189 *> i j
190 *> ZSTEMR('N', 'V') vs. CSTEMR('V', 'V')
191 *>
192 *> (35) | S - Z D Z* | / ( |S| n ulp ) ZSTEMR('V', 'A')
193 *>
194 *> (36) | I - ZZ* | / ( n ulp ) ZSTEMR('V', 'A')
195 *>
196 *> (37) ( max { min | WA2(i)-WA3(j) | } +
197 *> i j
198 *> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
199 *> i j
200 *> ZSTEMR('N', 'A') vs. CSTEMR('V', 'A')
201 *>
202 *> The "sizes" are specified by an array NN(1:NSIZES); the value of
203 *> each element NN(j) specifies one size.
204 *> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
205 *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
206 *> Currently, the list of possible types is:
207 *>
208 *> (1) The zero matrix.
209 *> (2) The identity matrix.
210 *>
211 *> (3) A diagonal matrix with evenly spaced entries
212 *> 1, ..., ULP and random signs.
213 *> (ULP = (first number larger than 1) - 1 )
214 *> (4) A diagonal matrix with geometrically spaced entries
215 *> 1, ..., ULP and random signs.
216 *> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
217 *> and random signs.
218 *>
219 *> (6) Same as (4), but multiplied by SQRT( overflow threshold )
220 *> (7) Same as (4), but multiplied by SQRT( underflow threshold )
221 *>
222 *> (8) A matrix of the form U* D U, where U is unitary and
223 *> D has evenly spaced entries 1, ..., ULP with random signs
224 *> on the diagonal.
225 *>
226 *> (9) A matrix of the form U* D U, where U is unitary and
227 *> D has geometrically spaced entries 1, ..., ULP with random
228 *> signs on the diagonal.
229 *>
230 *> (10) A matrix of the form U* D U, where U is unitary and
231 *> D has "clustered" entries 1, ULP,..., ULP with random
232 *> signs on the diagonal.
233 *>
234 *> (11) Same as (8), but multiplied by SQRT( overflow threshold )
235 *> (12) Same as (8), but multiplied by SQRT( underflow threshold )
236 *>
237 *> (13) Hermitian matrix with random entries chosen from (-1,1).
238 *> (14) Same as (13), but multiplied by SQRT( overflow threshold )
239 *> (15) Same as (13), but multiplied by SQRT( underflow threshold )
240 *> (16) Same as (8), but diagonal elements are all positive.
241 *> (17) Same as (9), but diagonal elements are all positive.
242 *> (18) Same as (10), but diagonal elements are all positive.
243 *> (19) Same as (16), but multiplied by SQRT( overflow threshold )
244 *> (20) Same as (16), but multiplied by SQRT( underflow threshold )
245 *> (21) A diagonally dominant tridiagonal matrix with geometrically
246 *> spaced diagonal entries 1, ..., ULP.
247 *> \endverbatim
248 *
249 * Arguments:
250 * ==========
251 *
252 *> \param[in] NSIZES
253 *> \verbatim
254 *> NSIZES is INTEGER
255 *> The number of sizes of matrices to use. If it is zero,
256 *> ZCHKST does nothing. It must be at least zero.
257 *> \endverbatim
258 *>
259 *> \param[in] NN
260 *> \verbatim
261 *> NN is INTEGER array, dimension (NSIZES)
262 *> An array containing the sizes to be used for the matrices.
263 *> Zero values will be skipped. The values must be at least
264 *> zero.
265 *> \endverbatim
266 *>
267 *> \param[in] NTYPES
268 *> \verbatim
269 *> NTYPES is INTEGER
270 *> The number of elements in DOTYPE. If it is zero, ZCHKST
271 *> does nothing. It must be at least zero. If it is MAXTYP+1
272 *> and NSIZES is 1, then an additional type, MAXTYP+1 is
273 *> defined, which is to use whatever matrix is in A. This
274 *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
275 *> DOTYPE(MAXTYP+1) is .TRUE. .
276 *> \endverbatim
277 *>
278 *> \param[in] DOTYPE
279 *> \verbatim
280 *> DOTYPE is LOGICAL array, dimension (NTYPES)
281 *> If DOTYPE(j) is .TRUE., then for each size in NN a
282 *> matrix of that size and of type j will be generated.
283 *> If NTYPES is smaller than the maximum number of types
284 *> defined (PARAMETER MAXTYP), then types NTYPES+1 through
285 *> MAXTYP will not be generated. If NTYPES is larger
286 *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
287 *> will be ignored.
288 *> \endverbatim
289 *>
290 *> \param[in,out] ISEED
291 *> \verbatim
292 *> ISEED is INTEGER array, dimension (4)
293 *> On entry ISEED specifies the seed of the random number
294 *> generator. The array elements should be between 0 and 4095;
295 *> if not they will be reduced mod 4096. Also, ISEED(4) must
296 *> be odd. The random number generator uses a linear
297 *> congruential sequence limited to small integers, and so
298 *> should produce machine independent random numbers. The
299 *> values of ISEED are changed on exit, and can be used in the
300 *> next call to ZCHKST to continue the same random number
301 *> sequence.
302 *> \endverbatim
303 *>
304 *> \param[in] THRESH
305 *> \verbatim
306 *> THRESH is DOUBLE PRECISION
307 *> A test will count as "failed" if the "error", computed as
308 *> described above, exceeds THRESH. Note that the error
309 *> is scaled to be O(1), so THRESH should be a reasonably
310 *> small multiple of 1, e.g., 10 or 100. In particular,
311 *> it should not depend on the precision (single vs. double)
312 *> or the size of the matrix. It must be at least zero.
313 *> \endverbatim
314 *>
315 *> \param[in] NOUNIT
316 *> \verbatim
317 *> NOUNIT is INTEGER
318 *> The FORTRAN unit number for printing out error messages
319 *> (e.g., if a routine returns IINFO not equal to 0.)
320 *> \endverbatim
321 *>
322 *> \param[in,out] A
323 *> \verbatim
324 *> A is COMPLEX*16 array of
325 *> dimension ( LDA , max(NN) )
326 *> Used to hold the matrix whose eigenvalues are to be
327 *> computed. On exit, A contains the last matrix actually
328 *> used.
329 *> \endverbatim
330 *>
331 *> \param[in] LDA
332 *> \verbatim
333 *> LDA is INTEGER
334 *> The leading dimension of A. It must be at
335 *> least 1 and at least max( NN ).
336 *> \endverbatim
337 *>
338 *> \param[out] AP
339 *> \verbatim
340 *> AP is COMPLEX*16 array of
341 *> dimension( max(NN)*max(NN+1)/2 )
342 *> The matrix A stored in packed format.
343 *> \endverbatim
344 *>
345 *> \param[out] SD
346 *> \verbatim
347 *> SD is DOUBLE PRECISION array of
348 *> dimension( max(NN) )
349 *> The diagonal of the tridiagonal matrix computed by ZHETRD.
350 *> On exit, SD and SE contain the tridiagonal form of the
351 *> matrix in A.
352 *> \endverbatim
353 *>
354 *> \param[out] SE
355 *> \verbatim
356 *> SE is DOUBLE PRECISION array of
357 *> dimension( max(NN) )
358 *> The off-diagonal of the tridiagonal matrix computed by
359 *> ZHETRD. On exit, SD and SE contain the tridiagonal form of
360 *> the matrix in A.
361 *> \endverbatim
362 *>
363 *> \param[out] D1
364 *> \verbatim
365 *> D1 is DOUBLE PRECISION array of
366 *> dimension( max(NN) )
367 *> The eigenvalues of A, as computed by ZSTEQR simlutaneously
368 *> with Z. On exit, the eigenvalues in D1 correspond with the
369 *> matrix in A.
370 *> \endverbatim
371 *>
372 *> \param[out] D2
373 *> \verbatim
374 *> D2 is DOUBLE PRECISION array of
375 *> dimension( max(NN) )
376 *> The eigenvalues of A, as computed by ZSTEQR if Z is not
377 *> computed. On exit, the eigenvalues in D2 correspond with
378 *> the matrix in A.
379 *> \endverbatim
380 *>
381 *> \param[out] D3
382 *> \verbatim
383 *> D3 is DOUBLE PRECISION array of
384 *> dimension( max(NN) )
385 *> The eigenvalues of A, as computed by DSTERF. On exit, the
386 *> eigenvalues in D3 correspond with the matrix in A.
387 *> \endverbatim
388 *>
389 *> \param[out] D4
390 *> \verbatim
391 *> D4 is DOUBLE PRECISION array of
392 *> dimension( max(NN) )
393 *> The eigenvalues of A, as computed by ZPTEQR(V).
394 *> ZPTEQR factors S as Z4 D4 Z4*
395 *> On exit, the eigenvalues in D4 correspond with the matrix in A.
396 *> \endverbatim
397 *>
398 *> \param[out] D5
399 *> \verbatim
400 *> D5 is DOUBLE PRECISION array of
401 *> dimension( max(NN) )
402 *> The eigenvalues of A, as computed by ZPTEQR(N)
403 *> when Z is not computed. On exit, the
404 *> eigenvalues in D4 correspond with the matrix in A.
405 *> \endverbatim
406 *>
407 *> \param[out] WA1
408 *> \verbatim
409 *> WA1 is DOUBLE PRECISION array of
410 *> dimension( max(NN) )
411 *> All eigenvalues of A, computed to high
412 *> absolute accuracy, with different range options.
413 *> as computed by DSTEBZ.
414 *> \endverbatim
415 *>
416 *> \param[out] WA2
417 *> \verbatim
418 *> WA2 is DOUBLE PRECISION array of
419 *> dimension( max(NN) )
420 *> Selected eigenvalues of A, computed to high
421 *> absolute accuracy, with different range options.
422 *> as computed by DSTEBZ.
423 *> Choose random values for IL and IU, and ask for the
424 *> IL-th through IU-th eigenvalues.
425 *> \endverbatim
426 *>
427 *> \param[out] WA3
428 *> \verbatim
429 *> WA3 is DOUBLE PRECISION array of
430 *> dimension( max(NN) )
431 *> Selected eigenvalues of A, computed to high
432 *> absolute accuracy, with different range options.
433 *> as computed by DSTEBZ.
434 *> Determine the values VL and VU of the IL-th and IU-th
435 *> eigenvalues and ask for all eigenvalues in this range.
436 *> \endverbatim
437 *>
438 *> \param[out] WR
439 *> \verbatim
440 *> WR is DOUBLE PRECISION array of
441 *> dimension( max(NN) )
442 *> All eigenvalues of A, computed to high
443 *> absolute accuracy, with different options.
444 *> as computed by DSTEBZ.
445 *> \endverbatim
446 *>
447 *> \param[out] U
448 *> \verbatim
449 *> U is COMPLEX*16 array of
450 *> dimension( LDU, max(NN) ).
451 *> The unitary matrix computed by ZHETRD + ZUNGTR.
452 *> \endverbatim
453 *>
454 *> \param[in] LDU
455 *> \verbatim
456 *> LDU is INTEGER
457 *> The leading dimension of U, Z, and V. It must be at least 1
458 *> and at least max( NN ).
459 *> \endverbatim
460 *>
461 *> \param[out] V
462 *> \verbatim
463 *> V is COMPLEX*16 array of
464 *> dimension( LDU, max(NN) ).
465 *> The Housholder vectors computed by ZHETRD in reducing A to
466 *> tridiagonal form. The vectors computed with UPLO='U' are
467 *> in the upper triangle, and the vectors computed with UPLO='L'
468 *> are in the lower triangle. (As described in ZHETRD, the
469 *> sub- and superdiagonal are not set to 1, although the
470 *> true Householder vector has a 1 in that position. The
471 *> routines that use V, such as ZUNGTR, set those entries to
472 *> 1 before using them, and then restore them later.)
473 *> \endverbatim
474 *>
475 *> \param[out] VP
476 *> \verbatim
477 *> VP is COMPLEX*16 array of
478 *> dimension( max(NN)*max(NN+1)/2 )
479 *> The matrix V stored in packed format.
480 *> \endverbatim
481 *>
482 *> \param[out] TAU
483 *> \verbatim
484 *> TAU is COMPLEX*16 array of
485 *> dimension( max(NN) )
486 *> The Householder factors computed by ZHETRD in reducing A
487 *> to tridiagonal form.
488 *> \endverbatim
489 *>
490 *> \param[out] Z
491 *> \verbatim
492 *> Z is COMPLEX*16 array of
493 *> dimension( LDU, max(NN) ).
494 *> The unitary matrix of eigenvectors computed by ZSTEQR,
495 *> ZPTEQR, and ZSTEIN.
496 *> \endverbatim
497 *>
498 *> \param[out] WORK
499 *> \verbatim
500 *> WORK is COMPLEX*16 array of
501 *> dimension( LWORK )
502 *> \endverbatim
503 *>
504 *> \param[in] LWORK
505 *> \verbatim
506 *> LWORK is INTEGER
507 *> The number of entries in WORK. This must be at least
508 *> 1 + 4 * Nmax + 2 * Nmax * lg Nmax + 3 * Nmax**2
509 *> where Nmax = max( NN(j), 2 ) and lg = log base 2.
510 *> \endverbatim
511 *>
512 *> \param[out] IWORK
513 *> \verbatim
514 *> IWORK is INTEGER array,
515 *> Workspace.
516 *> \endverbatim
517 *>
518 *> \param[out] LIWORK
519 *> \verbatim
520 *> LIWORK is INTEGER
521 *> The number of entries in IWORK. This must be at least
522 *> 6 + 6*Nmax + 5 * Nmax * lg Nmax
523 *> where Nmax = max( NN(j), 2 ) and lg = log base 2.
524 *> \endverbatim
525 *>
526 *> \param[out] RWORK
527 *> \verbatim
528 *> RWORK is DOUBLE PRECISION array
529 *> \endverbatim
530 *>
531 *> \param[in] LRWORK
532 *> \verbatim
533 *> LRWORK is INTEGER
534 *> The number of entries in LRWORK (dimension( ??? )
535 *> \endverbatim
536 *>
537 *> \param[out] RESULT
538 *> \verbatim
539 *> RESULT is DOUBLE PRECISION array, dimension (26)
540 *> The values computed by the tests described above.
541 *> The values are currently limited to 1/ulp, to avoid
542 *> overflow.
543 *> \endverbatim
544 *>
545 *> \param[out] INFO
546 *> \verbatim
547 *> INFO is INTEGER
548 *> If 0, then everything ran OK.
549 *> -1: NSIZES < 0
550 *> -2: Some NN(j) < 0
551 *> -3: NTYPES < 0
552 *> -5: THRESH < 0
553 *> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
554 *> -23: LDU < 1 or LDU < NMAX.
555 *> -29: LWORK too small.
556 *> If ZLATMR, CLATMS, ZHETRD, ZUNGTR, ZSTEQR, DSTERF,
557 *> or ZUNMC2 returns an error code, the
558 *> absolute value of it is returned.
559 *>
560 *>-----------------------------------------------------------------------
561 *>
562 *> Some Local Variables and Parameters:
563 *> ---- ----- --------- --- ----------
564 *> ZERO, ONE Real 0 and 1.
565 *> MAXTYP The number of types defined.
566 *> NTEST The number of tests performed, or which can
567 *> be performed so far, for the current matrix.
568 *> NTESTT The total number of tests performed so far.
569 *> NBLOCK Blocksize as returned by ENVIR.
570 *> NMAX Largest value in NN.
571 *> NMATS The number of matrices generated so far.
572 *> NERRS The number of tests which have exceeded THRESH
573 *> so far.
574 *> COND, IMODE Values to be passed to the matrix generators.
575 *> ANORM Norm of A; passed to matrix generators.
576 *>
577 *> OVFL, UNFL Overflow and underflow thresholds.
578 *> ULP, ULPINV Finest relative precision and its inverse.
579 *> RTOVFL, RTUNFL Square roots of the previous 2 values.
580 *> The following four arrays decode JTYPE:
581 *> KTYPE(j) The general type (1-10) for type "j".
582 *> KMODE(j) The MODE value to be passed to the matrix
583 *> generator for type "j".
584 *> KMAGN(j) The order of magnitude ( O(1),
585 *> O(overflow^(1/2) ), O(underflow^(1/2) )
586 *> \endverbatim
587 *
588 * Authors:
589 * ========
590 *
591 *> \author Univ. of Tennessee
592 *> \author Univ. of California Berkeley
593 *> \author Univ. of Colorado Denver
594 *> \author NAG Ltd.
595 *
596 *> \date November 2011
597 *
598 *> \ingroup complex16_eig
599 *
600 * =====================================================================
601  SUBROUTINE zchkst( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
602  \$ nounit, a, lda, ap, sd, se, d1, d2, d3, d4, d5,
603  \$ wa1, wa2, wa3, wr, u, ldu, v, vp, tau, z, work,
604  \$ lwork, rwork, lrwork, iwork, liwork, result,
605  \$ info )
606 *
607 * -- LAPACK test routine (version 3.4.0) --
608 * -- LAPACK is a software package provided by Univ. of Tennessee, --
609 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
610 * November 2011
611 *
612 * .. Scalar Arguments ..
613  INTEGER info, lda, ldu, liwork, lrwork, lwork, nounit,
614  \$ nsizes, ntypes
615  DOUBLE PRECISION thresh
616 * ..
617 * .. Array Arguments ..
618  LOGICAL dotype( * )
619  INTEGER iseed( 4 ), iwork( * ), nn( * )
620  DOUBLE PRECISION d1( * ), d2( * ), d3( * ), d4( * ), d5( * ),
621  \$ result( * ), rwork( * ), sd( * ), se( * ),
622  \$ wa1( * ), wa2( * ), wa3( * ), wr( * )
623  COMPLEX*16 a( lda, * ), ap( * ), tau( * ), u( ldu, * ),
624  \$ v( ldu, * ), vp( * ), work( * ), z( ldu, * )
625 * ..
626 *
627 * =====================================================================
628 *
629 * .. Parameters ..
630  DOUBLE PRECISION zero, one, two, eight, ten, hun
631  parameter( zero = 0.0d0, one = 1.0d0, two = 2.0d0,
632  \$ eight = 8.0d0, ten = 10.0d0, hun = 100.0d0 )
633  COMPLEX*16 czero, cone
634  parameter( czero = ( 0.0d+0, 0.0d+0 ),
635  \$ cone = ( 1.0d+0, 0.0d+0 ) )
636  DOUBLE PRECISION half
637  parameter( half = one / two )
638  INTEGER maxtyp
639  parameter( maxtyp = 21 )
640  LOGICAL crange
641  parameter( crange = .false. )
642  LOGICAL crel
643  parameter( crel = .false. )
644 * ..
645 * .. Local Scalars ..
647  INTEGER i, iinfo, il, imode, inde, indrwk, itemp,
648  \$ itype, iu, j, jc, jr, jsize, jtype, lgn,
649  \$ liwedc, log2ui, lrwedc, lwedc, m, m2, m3,
650  \$ mtypes, n, nap, nblock, nerrs, nmats, nmax,
651  \$ nsplit, ntest, ntestt
652  DOUBLE PRECISION abstol, aninv, anorm, cond, ovfl, rtovfl,
653  \$ rtunfl, temp1, temp2, temp3, temp4, ulp,
654  \$ ulpinv, unfl, vl, vu
655 * ..
656 * .. Local Arrays ..
657  INTEGER idumma( 1 ), ioldsd( 4 ), iseed2( 4 ),
658  \$ kmagn( maxtyp ), kmode( maxtyp ),
659  \$ ktype( maxtyp )
660  DOUBLE PRECISION dumma( 1 )
661 * ..
662 * .. External Functions ..
663  INTEGER ilaenv
664  DOUBLE PRECISION dlamch, dlarnd, dsxt1
665  EXTERNAL ilaenv, dlamch, dlarnd, dsxt1
666 * ..
667 * .. External Subroutines ..
668  EXTERNAL dcopy, dlabad, dlasum, dstebz, dstech, dsterf,
672  \$ zupgtr
673 * ..
674 * .. Intrinsic Functions ..
675  INTRINSIC abs, dble, dconjg, int, log, max, min, sqrt
676 * ..
677 * .. Data statements ..
678  DATA ktype / 1, 2, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 8,
679  \$ 8, 8, 9, 9, 9, 9, 9, 10 /
680  DATA kmagn / 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
681  \$ 2, 3, 1, 1, 1, 2, 3, 1 /
682  DATA kmode / 0, 0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
683  \$ 0, 0, 4, 3, 1, 4, 4, 3 /
684 * ..
685 * .. Executable Statements ..
686 *
687 * Keep ftnchek happy
688  idumma( 1 ) = 1
689 *
690 * Check for errors
691 *
692  ntestt = 0
693  info = 0
694 *
695 * Important constants
696 *
698  tryrac = .true.
699  nmax = 1
700  DO 10 j = 1, nsizes
701  nmax = max( nmax, nn( j ) )
702  IF( nn( j ).LT.0 )
704  10 continue
705 *
706  nblock = ilaenv( 1, 'ZHETRD', 'L', nmax, -1, -1, -1 )
707  nblock = min( nmax, max( 1, nblock ) )
708 *
709 * Check for errors
710 *
711  IF( nsizes.LT.0 ) THEN
712  info = -1
713  ELSE IF( badnn ) THEN
714  info = -2
715  ELSE IF( ntypes.LT.0 ) THEN
716  info = -3
717  ELSE IF( lda.LT.nmax ) THEN
718  info = -9
719  ELSE IF( ldu.LT.nmax ) THEN
720  info = -23
721  ELSE IF( 2*max( 2, nmax )**2.GT.lwork ) THEN
722  info = -29
723  END IF
724 *
725  IF( info.NE.0 ) THEN
726  CALL xerbla( 'ZCHKST', -info )
727  return
728  END IF
729 *
730 * Quick return if possible
731 *
732  IF( nsizes.EQ.0 .OR. ntypes.EQ.0 )
733  \$ return
734 *
735 * More Important constants
736 *
737  unfl = dlamch( 'Safe minimum' )
738  ovfl = one / unfl
739  CALL dlabad( unfl, ovfl )
740  ulp = dlamch( 'Epsilon' )*dlamch( 'Base' )
741  ulpinv = one / ulp
742  log2ui = int( log( ulpinv ) / log( two ) )
743  rtunfl = sqrt( unfl )
744  rtovfl = sqrt( ovfl )
745 *
746 * Loop over sizes, types
747 *
748  DO 20 i = 1, 4
749  iseed2( i ) = iseed( i )
750  20 continue
751  nerrs = 0
752  nmats = 0
753 *
754  DO 310 jsize = 1, nsizes
755  n = nn( jsize )
756  IF( n.GT.0 ) THEN
757  lgn = int( log( dble( n ) ) / log( two ) )
758  IF( 2**lgn.LT.n )
759  \$ lgn = lgn + 1
760  IF( 2**lgn.LT.n )
761  \$ lgn = lgn + 1
762  lwedc = 1 + 4*n + 2*n*lgn + 4*n**2
763  lrwedc = 1 + 3*n + 2*n*lgn + 4*n**2
764  liwedc = 6 + 6*n + 5*n*lgn
765  ELSE
766  lwedc = 8
767  lrwedc = 7
768  liwedc = 12
769  END IF
770  nap = ( n*( n+1 ) ) / 2
771  aninv = one / dble( max( 1, n ) )
772 *
773  IF( nsizes.NE.1 ) THEN
774  mtypes = min( maxtyp, ntypes )
775  ELSE
776  mtypes = min( maxtyp+1, ntypes )
777  END IF
778 *
779  DO 300 jtype = 1, mtypes
780  IF( .NOT.dotype( jtype ) )
781  \$ go to 300
782  nmats = nmats + 1
783  ntest = 0
784 *
785  DO 30 j = 1, 4
786  ioldsd( j ) = iseed( j )
787  30 continue
788 *
789 * Compute "A"
790 *
791 * Control parameters:
792 *
793 * KMAGN KMODE KTYPE
794 * =1 O(1) clustered 1 zero
795 * =2 large clustered 2 identity
796 * =3 small exponential (none)
797 * =4 arithmetic diagonal, (w/ eigenvalues)
798 * =5 random log Hermitian, w/ eigenvalues
799 * =6 random (none)
800 * =7 random diagonal
801 * =8 random Hermitian
802 * =9 positive definite
803 * =10 diagonally dominant tridiagonal
804 *
805  IF( mtypes.GT.maxtyp )
806  \$ go to 100
807 *
808  itype = ktype( jtype )
809  imode = kmode( jtype )
810 *
811 * Compute norm
812 *
813  go to( 40, 50, 60 )kmagn( jtype )
814 *
815  40 continue
816  anorm = one
817  go to 70
818 *
819  50 continue
820  anorm = ( rtovfl*ulp )*aninv
821  go to 70
822 *
823  60 continue
824  anorm = rtunfl*n*ulpinv
825  go to 70
826 *
827  70 continue
828 *
829  CALL zlaset( 'Full', lda, n, czero, czero, a, lda )
830  iinfo = 0
831  IF( jtype.LE.15 ) THEN
832  cond = ulpinv
833  ELSE
834  cond = ulpinv*aninv / ten
835  END IF
836 *
837 * Special Matrices -- Identity & Jordan block
838 *
839 * Zero
840 *
841  IF( itype.EQ.1 ) THEN
842  iinfo = 0
843 *
844  ELSE IF( itype.EQ.2 ) THEN
845 *
846 * Identity
847 *
848  DO 80 jc = 1, n
849  a( jc, jc ) = anorm
850  80 continue
851 *
852  ELSE IF( itype.EQ.4 ) THEN
853 *
854 * Diagonal Matrix, [Eigen]values Specified
855 *
856  CALL zlatms( n, n, 'S', iseed, 'H', rwork, imode, cond,
857  \$ anorm, 0, 0, 'N', a, lda, work, iinfo )
858 *
859 *
860  ELSE IF( itype.EQ.5 ) THEN
861 *
862 * Hermitian, eigenvalues specified
863 *
864  CALL zlatms( n, n, 'S', iseed, 'H', rwork, imode, cond,
865  \$ anorm, n, n, 'N', a, lda, work, iinfo )
866 *
867  ELSE IF( itype.EQ.7 ) THEN
868 *
869 * Diagonal, random eigenvalues
870 *
871  CALL zlatmr( n, n, 'S', iseed, 'H', work, 6, one, cone,
872  \$ 'T', 'N', work( n+1 ), 1, one,
873  \$ work( 2*n+1 ), 1, one, 'N', idumma, 0, 0,
874  \$ zero, anorm, 'NO', a, lda, iwork, iinfo )
875 *
876  ELSE IF( itype.EQ.8 ) THEN
877 *
878 * Hermitian, random eigenvalues
879 *
880  CALL zlatmr( n, n, 'S', iseed, 'H', work, 6, one, cone,
881  \$ 'T', 'N', work( n+1 ), 1, one,
882  \$ work( 2*n+1 ), 1, one, 'N', idumma, n, n,
883  \$ zero, anorm, 'NO', a, lda, iwork, iinfo )
884 *
885  ELSE IF( itype.EQ.9 ) THEN
886 *
887 * Positive definite, eigenvalues specified.
888 *
889  CALL zlatms( n, n, 'S', iseed, 'P', rwork, imode, cond,
890  \$ anorm, n, n, 'N', a, lda, work, iinfo )
891 *
892  ELSE IF( itype.EQ.10 ) THEN
893 *
894 * Positive definite tridiagonal, eigenvalues specified.
895 *
896  CALL zlatms( n, n, 'S', iseed, 'P', rwork, imode, cond,
897  \$ anorm, 1, 1, 'N', a, lda, work, iinfo )
898  DO 90 i = 2, n
899  temp1 = abs( a( i-1, i ) )
900  temp2 = sqrt( abs( a( i-1, i-1 )*a( i, i ) ) )
901  IF( temp1.GT.half*temp2 ) THEN
902  a( i-1, i ) = a( i-1, i )*
903  \$ ( half*temp2 / ( unfl+temp1 ) )
904  a( i, i-1 ) = dconjg( a( i-1, i ) )
905  END IF
906  90 continue
907 *
908  ELSE
909 *
910  iinfo = 1
911  END IF
912 *
913  IF( iinfo.NE.0 ) THEN
914  WRITE( nounit, fmt = 9999 )'Generator', iinfo, n, jtype,
915  \$ ioldsd
916  info = abs( iinfo )
917  return
918  END IF
919 *
920  100 continue
921 *
922 * Call ZHETRD and ZUNGTR to compute S and U from
923 * upper triangle.
924 *
925  CALL zlacpy( 'U', n, n, a, lda, v, ldu )
926 *
927  ntest = 1
928  CALL zhetrd( 'U', n, v, ldu, sd, se, tau, work, lwork,
929  \$ iinfo )
930 *
931  IF( iinfo.NE.0 ) THEN
932  WRITE( nounit, fmt = 9999 )'ZHETRD(U)', iinfo, n, jtype,
933  \$ ioldsd
934  info = abs( iinfo )
935  IF( iinfo.LT.0 ) THEN
936  return
937  ELSE
938  result( 1 ) = ulpinv
939  go to 280
940  END IF
941  END IF
942 *
943  CALL zlacpy( 'U', n, n, v, ldu, u, ldu )
944 *
945  ntest = 2
946  CALL zungtr( 'U', n, u, ldu, tau, work, lwork, iinfo )
947  IF( iinfo.NE.0 ) THEN
948  WRITE( nounit, fmt = 9999 )'ZUNGTR(U)', iinfo, n, jtype,
949  \$ ioldsd
950  info = abs( iinfo )
951  IF( iinfo.LT.0 ) THEN
952  return
953  ELSE
954  result( 2 ) = ulpinv
955  go to 280
956  END IF
957  END IF
958 *
959 * Do tests 1 and 2
960 *
961  CALL zhet21( 2, 'Upper', n, 1, a, lda, sd, se, u, ldu, v,
962  \$ ldu, tau, work, rwork, result( 1 ) )
963  CALL zhet21( 3, 'Upper', n, 1, a, lda, sd, se, u, ldu, v,
964  \$ ldu, tau, work, rwork, result( 2 ) )
965 *
966 * Call ZHETRD and ZUNGTR to compute S and U from
967 * lower triangle, do tests.
968 *
969  CALL zlacpy( 'L', n, n, a, lda, v, ldu )
970 *
971  ntest = 3
972  CALL zhetrd( 'L', n, v, ldu, sd, se, tau, work, lwork,
973  \$ iinfo )
974 *
975  IF( iinfo.NE.0 ) THEN
976  WRITE( nounit, fmt = 9999 )'ZHETRD(L)', iinfo, n, jtype,
977  \$ ioldsd
978  info = abs( iinfo )
979  IF( iinfo.LT.0 ) THEN
980  return
981  ELSE
982  result( 3 ) = ulpinv
983  go to 280
984  END IF
985  END IF
986 *
987  CALL zlacpy( 'L', n, n, v, ldu, u, ldu )
988 *
989  ntest = 4
990  CALL zungtr( 'L', n, u, ldu, tau, work, lwork, iinfo )
991  IF( iinfo.NE.0 ) THEN
992  WRITE( nounit, fmt = 9999 )'ZUNGTR(L)', iinfo, n, jtype,
993  \$ ioldsd
994  info = abs( iinfo )
995  IF( iinfo.LT.0 ) THEN
996  return
997  ELSE
998  result( 4 ) = ulpinv
999  go to 280
1000  END IF
1001  END IF
1002 *
1003  CALL zhet21( 2, 'Lower', n, 1, a, lda, sd, se, u, ldu, v,
1004  \$ ldu, tau, work, rwork, result( 3 ) )
1005  CALL zhet21( 3, 'Lower', n, 1, a, lda, sd, se, u, ldu, v,
1006  \$ ldu, tau, work, rwork, result( 4 ) )
1007 *
1008 * Store the upper triangle of A in AP
1009 *
1010  i = 0
1011  DO 120 jc = 1, n
1012  DO 110 jr = 1, jc
1013  i = i + 1
1014  ap( i ) = a( jr, jc )
1015  110 continue
1016  120 continue
1017 *
1018 * Call ZHPTRD and ZUPGTR to compute S and U from AP
1019 *
1020  CALL zcopy( nap, ap, 1, vp, 1 )
1021 *
1022  ntest = 5
1023  CALL zhptrd( 'U', n, vp, sd, se, tau, iinfo )
1024 *
1025  IF( iinfo.NE.0 ) THEN
1026  WRITE( nounit, fmt = 9999 )'ZHPTRD(U)', iinfo, n, jtype,
1027  \$ ioldsd
1028  info = abs( iinfo )
1029  IF( iinfo.LT.0 ) THEN
1030  return
1031  ELSE
1032  result( 5 ) = ulpinv
1033  go to 280
1034  END IF
1035  END IF
1036 *
1037  ntest = 6
1038  CALL zupgtr( 'U', n, vp, tau, u, ldu, work, iinfo )
1039  IF( iinfo.NE.0 ) THEN
1040  WRITE( nounit, fmt = 9999 )'ZUPGTR(U)', iinfo, n, jtype,
1041  \$ ioldsd
1042  info = abs( iinfo )
1043  IF( iinfo.LT.0 ) THEN
1044  return
1045  ELSE
1046  result( 6 ) = ulpinv
1047  go to 280
1048  END IF
1049  END IF
1050 *
1051 * Do tests 5 and 6
1052 *
1053  CALL zhpt21( 2, 'Upper', n, 1, ap, sd, se, u, ldu, vp, tau,
1054  \$ work, rwork, result( 5 ) )
1055  CALL zhpt21( 3, 'Upper', n, 1, ap, sd, se, u, ldu, vp, tau,
1056  \$ work, rwork, result( 6 ) )
1057 *
1058 * Store the lower triangle of A in AP
1059 *
1060  i = 0
1061  DO 140 jc = 1, n
1062  DO 130 jr = jc, n
1063  i = i + 1
1064  ap( i ) = a( jr, jc )
1065  130 continue
1066  140 continue
1067 *
1068 * Call ZHPTRD and ZUPGTR to compute S and U from AP
1069 *
1070  CALL zcopy( nap, ap, 1, vp, 1 )
1071 *
1072  ntest = 7
1073  CALL zhptrd( 'L', n, vp, sd, se, tau, iinfo )
1074 *
1075  IF( iinfo.NE.0 ) THEN
1076  WRITE( nounit, fmt = 9999 )'ZHPTRD(L)', iinfo, n, jtype,
1077  \$ ioldsd
1078  info = abs( iinfo )
1079  IF( iinfo.LT.0 ) THEN
1080  return
1081  ELSE
1082  result( 7 ) = ulpinv
1083  go to 280
1084  END IF
1085  END IF
1086 *
1087  ntest = 8
1088  CALL zupgtr( 'L', n, vp, tau, u, ldu, work, iinfo )
1089  IF( iinfo.NE.0 ) THEN
1090  WRITE( nounit, fmt = 9999 )'ZUPGTR(L)', iinfo, n, jtype,
1091  \$ ioldsd
1092  info = abs( iinfo )
1093  IF( iinfo.LT.0 ) THEN
1094  return
1095  ELSE
1096  result( 8 ) = ulpinv
1097  go to 280
1098  END IF
1099  END IF
1100 *
1101  CALL zhpt21( 2, 'Lower', n, 1, ap, sd, se, u, ldu, vp, tau,
1102  \$ work, rwork, result( 7 ) )
1103  CALL zhpt21( 3, 'Lower', n, 1, ap, sd, se, u, ldu, vp, tau,
1104  \$ work, rwork, result( 8 ) )
1105 *
1106 * Call ZSTEQR to compute D1, D2, and Z, do tests.
1107 *
1108 * Compute D1 and Z
1109 *
1110  CALL dcopy( n, sd, 1, d1, 1 )
1111  IF( n.GT.0 )
1112  \$ CALL dcopy( n-1, se, 1, rwork, 1 )
1113  CALL zlaset( 'Full', n, n, czero, cone, z, ldu )
1114 *
1115  ntest = 9
1116  CALL zsteqr( 'V', n, d1, rwork, z, ldu, rwork( n+1 ),
1117  \$ iinfo )
1118  IF( iinfo.NE.0 ) THEN
1119  WRITE( nounit, fmt = 9999 )'ZSTEQR(V)', iinfo, n, jtype,
1120  \$ ioldsd
1121  info = abs( iinfo )
1122  IF( iinfo.LT.0 ) THEN
1123  return
1124  ELSE
1125  result( 9 ) = ulpinv
1126  go to 280
1127  END IF
1128  END IF
1129 *
1130 * Compute D2
1131 *
1132  CALL dcopy( n, sd, 1, d2, 1 )
1133  IF( n.GT.0 )
1134  \$ CALL dcopy( n-1, se, 1, rwork, 1 )
1135 *
1136  ntest = 11
1137  CALL zsteqr( 'N', n, d2, rwork, work, ldu, rwork( n+1 ),
1138  \$ iinfo )
1139  IF( iinfo.NE.0 ) THEN
1140  WRITE( nounit, fmt = 9999 )'ZSTEQR(N)', iinfo, n, jtype,
1141  \$ ioldsd
1142  info = abs( iinfo )
1143  IF( iinfo.LT.0 ) THEN
1144  return
1145  ELSE
1146  result( 11 ) = ulpinv
1147  go to 280
1148  END IF
1149  END IF
1150 *
1151 * Compute D3 (using PWK method)
1152 *
1153  CALL dcopy( n, sd, 1, d3, 1 )
1154  IF( n.GT.0 )
1155  \$ CALL dcopy( n-1, se, 1, rwork, 1 )
1156 *
1157  ntest = 12
1158  CALL dsterf( n, d3, rwork, iinfo )
1159  IF( iinfo.NE.0 ) THEN
1160  WRITE( nounit, fmt = 9999 )'DSTERF', iinfo, n, jtype,
1161  \$ ioldsd
1162  info = abs( iinfo )
1163  IF( iinfo.LT.0 ) THEN
1164  return
1165  ELSE
1166  result( 12 ) = ulpinv
1167  go to 280
1168  END IF
1169  END IF
1170 *
1171 * Do Tests 9 and 10
1172 *
1173  CALL zstt21( n, 0, sd, se, d1, dumma, z, ldu, work, rwork,
1174  \$ result( 9 ) )
1175 *
1176 * Do Tests 11 and 12
1177 *
1178  temp1 = zero
1179  temp2 = zero
1180  temp3 = zero
1181  temp4 = zero
1182 *
1183  DO 150 j = 1, n
1184  temp1 = max( temp1, abs( d1( j ) ), abs( d2( j ) ) )
1185  temp2 = max( temp2, abs( d1( j )-d2( j ) ) )
1186  temp3 = max( temp3, abs( d1( j ) ), abs( d3( j ) ) )
1187  temp4 = max( temp4, abs( d1( j )-d3( j ) ) )
1188  150 continue
1189 *
1190  result( 11 ) = temp2 / max( unfl, ulp*max( temp1, temp2 ) )
1191  result( 12 ) = temp4 / max( unfl, ulp*max( temp3, temp4 ) )
1192 *
1193 * Do Test 13 -- Sturm Sequence Test of Eigenvalues
1194 * Go up by factors of two until it succeeds
1195 *
1196  ntest = 13
1197  temp1 = thresh*( half-ulp )
1198 *
1199  DO 160 j = 0, log2ui
1200  CALL dstech( n, sd, se, d1, temp1, rwork, iinfo )
1201  IF( iinfo.EQ.0 )
1202  \$ go to 170
1203  temp1 = temp1*two
1204  160 continue
1205 *
1206  170 continue
1207  result( 13 ) = temp1
1208 *
1209 * For positive definite matrices ( JTYPE.GT.15 ) call ZPTEQR
1210 * and do tests 14, 15, and 16 .
1211 *
1212  IF( jtype.GT.15 ) THEN
1213 *
1214 * Compute D4 and Z4
1215 *
1216  CALL dcopy( n, sd, 1, d4, 1 )
1217  IF( n.GT.0 )
1218  \$ CALL dcopy( n-1, se, 1, rwork, 1 )
1219  CALL zlaset( 'Full', n, n, czero, cone, z, ldu )
1220 *
1221  ntest = 14
1222  CALL zpteqr( 'V', n, d4, rwork, z, ldu, rwork( n+1 ),
1223  \$ iinfo )
1224  IF( iinfo.NE.0 ) THEN
1225  WRITE( nounit, fmt = 9999 )'ZPTEQR(V)', iinfo, n,
1226  \$ jtype, ioldsd
1227  info = abs( iinfo )
1228  IF( iinfo.LT.0 ) THEN
1229  return
1230  ELSE
1231  result( 14 ) = ulpinv
1232  go to 280
1233  END IF
1234  END IF
1235 *
1236 * Do Tests 14 and 15
1237 *
1238  CALL zstt21( n, 0, sd, se, d4, dumma, z, ldu, work,
1239  \$ rwork, result( 14 ) )
1240 *
1241 * Compute D5
1242 *
1243  CALL dcopy( n, sd, 1, d5, 1 )
1244  IF( n.GT.0 )
1245  \$ CALL dcopy( n-1, se, 1, rwork, 1 )
1246 *
1247  ntest = 16
1248  CALL zpteqr( 'N', n, d5, rwork, z, ldu, rwork( n+1 ),
1249  \$ iinfo )
1250  IF( iinfo.NE.0 ) THEN
1251  WRITE( nounit, fmt = 9999 )'ZPTEQR(N)', iinfo, n,
1252  \$ jtype, ioldsd
1253  info = abs( iinfo )
1254  IF( iinfo.LT.0 ) THEN
1255  return
1256  ELSE
1257  result( 16 ) = ulpinv
1258  go to 280
1259  END IF
1260  END IF
1261 *
1262 * Do Test 16
1263 *
1264  temp1 = zero
1265  temp2 = zero
1266  DO 180 j = 1, n
1267  temp1 = max( temp1, abs( d4( j ) ), abs( d5( j ) ) )
1268  temp2 = max( temp2, abs( d4( j )-d5( j ) ) )
1269  180 continue
1270 *
1271  result( 16 ) = temp2 / max( unfl,
1272  \$ hun*ulp*max( temp1, temp2 ) )
1273  ELSE
1274  result( 14 ) = zero
1275  result( 15 ) = zero
1276  result( 16 ) = zero
1277  END IF
1278 *
1279 * Call DSTEBZ with different options and do tests 17-18.
1280 *
1281 * If S is positive definite and diagonally dominant,
1282 * ask for all eigenvalues with high relative accuracy.
1283 *
1284  vl = zero
1285  vu = zero
1286  il = 0
1287  iu = 0
1288  IF( jtype.EQ.21 ) THEN
1289  ntest = 17
1290  abstol = unfl + unfl
1291  CALL dstebz( 'A', 'E', n, vl, vu, il, iu, abstol, sd, se,
1292  \$ m, nsplit, wr, iwork( 1 ), iwork( n+1 ),
1293  \$ rwork, iwork( 2*n+1 ), iinfo )
1294  IF( iinfo.NE.0 ) THEN
1295  WRITE( nounit, fmt = 9999 )'DSTEBZ(A,rel)', iinfo, n,
1296  \$ jtype, ioldsd
1297  info = abs( iinfo )
1298  IF( iinfo.LT.0 ) THEN
1299  return
1300  ELSE
1301  result( 17 ) = ulpinv
1302  go to 280
1303  END IF
1304  END IF
1305 *
1306 * Do test 17
1307 *
1308  temp2 = two*( two*n-one )*ulp*( one+eight*half**2 ) /
1309  \$ ( one-half )**4
1310 *
1311  temp1 = zero
1312  DO 190 j = 1, n
1313  temp1 = max( temp1, abs( d4( j )-wr( n-j+1 ) ) /
1314  \$ ( abstol+abs( d4( j ) ) ) )
1315  190 continue
1316 *
1317  result( 17 ) = temp1 / temp2
1318  ELSE
1319  result( 17 ) = zero
1320  END IF
1321 *
1322 * Now ask for all eigenvalues with high absolute accuracy.
1323 *
1324  ntest = 18
1325  abstol = unfl + unfl
1326  CALL dstebz( 'A', 'E', n, vl, vu, il, iu, abstol, sd, se, m,
1327  \$ nsplit, wa1, iwork( 1 ), iwork( n+1 ), rwork,
1328  \$ iwork( 2*n+1 ), iinfo )
1329  IF( iinfo.NE.0 ) THEN
1330  WRITE( nounit, fmt = 9999 )'DSTEBZ(A)', iinfo, n, jtype,
1331  \$ ioldsd
1332  info = abs( iinfo )
1333  IF( iinfo.LT.0 ) THEN
1334  return
1335  ELSE
1336  result( 18 ) = ulpinv
1337  go to 280
1338  END IF
1339  END IF
1340 *
1341 * Do test 18
1342 *
1343  temp1 = zero
1344  temp2 = zero
1345  DO 200 j = 1, n
1346  temp1 = max( temp1, abs( d3( j ) ), abs( wa1( j ) ) )
1347  temp2 = max( temp2, abs( d3( j )-wa1( j ) ) )
1348  200 continue
1349 *
1350  result( 18 ) = temp2 / max( unfl, ulp*max( temp1, temp2 ) )
1351 *
1352 * Choose random values for IL and IU, and ask for the
1353 * IL-th through IU-th eigenvalues.
1354 *
1355  ntest = 19
1356  IF( n.LE.1 ) THEN
1357  il = 1
1358  iu = n
1359  ELSE
1360  il = 1 + ( n-1 )*int( dlarnd( 1, iseed2 ) )
1361  iu = 1 + ( n-1 )*int( dlarnd( 1, iseed2 ) )
1362  IF( iu.LT.il ) THEN
1363  itemp = iu
1364  iu = il
1365  il = itemp
1366  END IF
1367  END IF
1368 *
1369  CALL dstebz( 'I', 'E', n, vl, vu, il, iu, abstol, sd, se,
1370  \$ m2, nsplit, wa2, iwork( 1 ), iwork( n+1 ),
1371  \$ rwork, iwork( 2*n+1 ), iinfo )
1372  IF( iinfo.NE.0 ) THEN
1373  WRITE( nounit, fmt = 9999 )'DSTEBZ(I)', iinfo, n, jtype,
1374  \$ ioldsd
1375  info = abs( iinfo )
1376  IF( iinfo.LT.0 ) THEN
1377  return
1378  ELSE
1379  result( 19 ) = ulpinv
1380  go to 280
1381  END IF
1382  END IF
1383 *
1384 * Determine the values VL and VU of the IL-th and IU-th
1385 * eigenvalues and ask for all eigenvalues in this range.
1386 *
1387  IF( n.GT.0 ) THEN
1388  IF( il.NE.1 ) THEN
1389  vl = wa1( il ) - max( half*( wa1( il )-wa1( il-1 ) ),
1390  \$ ulp*anorm, two*rtunfl )
1391  ELSE
1392  vl = wa1( 1 ) - max( half*( wa1( n )-wa1( 1 ) ),
1393  \$ ulp*anorm, two*rtunfl )
1394  END IF
1395  IF( iu.NE.n ) THEN
1396  vu = wa1( iu ) + max( half*( wa1( iu+1 )-wa1( iu ) ),
1397  \$ ulp*anorm, two*rtunfl )
1398  ELSE
1399  vu = wa1( n ) + max( half*( wa1( n )-wa1( 1 ) ),
1400  \$ ulp*anorm, two*rtunfl )
1401  END IF
1402  ELSE
1403  vl = zero
1404  vu = one
1405  END IF
1406 *
1407  CALL dstebz( 'V', 'E', n, vl, vu, il, iu, abstol, sd, se,
1408  \$ m3, nsplit, wa3, iwork( 1 ), iwork( n+1 ),
1409  \$ rwork, iwork( 2*n+1 ), iinfo )
1410  IF( iinfo.NE.0 ) THEN
1411  WRITE( nounit, fmt = 9999 )'DSTEBZ(V)', iinfo, n, jtype,
1412  \$ ioldsd
1413  info = abs( iinfo )
1414  IF( iinfo.LT.0 ) THEN
1415  return
1416  ELSE
1417  result( 19 ) = ulpinv
1418  go to 280
1419  END IF
1420  END IF
1421 *
1422  IF( m3.EQ.0 .AND. n.NE.0 ) THEN
1423  result( 19 ) = ulpinv
1424  go to 280
1425  END IF
1426 *
1427 * Do test 19
1428 *
1429  temp1 = dsxt1( 1, wa2, m2, wa3, m3, abstol, ulp, unfl )
1430  temp2 = dsxt1( 1, wa3, m3, wa2, m2, abstol, ulp, unfl )
1431  IF( n.GT.0 ) THEN
1432  temp3 = max( abs( wa1( n ) ), abs( wa1( 1 ) ) )
1433  ELSE
1434  temp3 = zero
1435  END IF
1436 *
1437  result( 19 ) = ( temp1+temp2 ) / max( unfl, temp3*ulp )
1438 *
1439 * Call ZSTEIN to compute eigenvectors corresponding to
1440 * eigenvalues in WA1. (First call DSTEBZ again, to make sure
1441 * it returns these eigenvalues in the correct order.)
1442 *
1443  ntest = 21
1444  CALL dstebz( 'A', 'B', n, vl, vu, il, iu, abstol, sd, se, m,
1445  \$ nsplit, wa1, iwork( 1 ), iwork( n+1 ), rwork,
1446  \$ iwork( 2*n+1 ), iinfo )
1447  IF( iinfo.NE.0 ) THEN
1448  WRITE( nounit, fmt = 9999 )'DSTEBZ(A,B)', iinfo, n,
1449  \$ jtype, ioldsd
1450  info = abs( iinfo )
1451  IF( iinfo.LT.0 ) THEN
1452  return
1453  ELSE
1454  result( 20 ) = ulpinv
1455  result( 21 ) = ulpinv
1456  go to 280
1457  END IF
1458  END IF
1459 *
1460  CALL zstein( n, sd, se, m, wa1, iwork( 1 ), iwork( n+1 ), z,
1461  \$ ldu, rwork, iwork( 2*n+1 ), iwork( 3*n+1 ),
1462  \$ iinfo )
1463  IF( iinfo.NE.0 ) THEN
1464  WRITE( nounit, fmt = 9999 )'ZSTEIN', iinfo, n, jtype,
1465  \$ ioldsd
1466  info = abs( iinfo )
1467  IF( iinfo.LT.0 ) THEN
1468  return
1469  ELSE
1470  result( 20 ) = ulpinv
1471  result( 21 ) = ulpinv
1472  go to 280
1473  END IF
1474  END IF
1475 *
1476 * Do tests 20 and 21
1477 *
1478  CALL zstt21( n, 0, sd, se, wa1, dumma, z, ldu, work, rwork,
1479  \$ result( 20 ) )
1480 *
1481 * Call ZSTEDC(I) to compute D1 and Z, do tests.
1482 *
1483 * Compute D1 and Z
1484 *
1485  inde = 1
1486  indrwk = inde + n
1487  CALL dcopy( n, sd, 1, d1, 1 )
1488  IF( n.GT.0 )
1489  \$ CALL dcopy( n-1, se, 1, rwork( inde ), 1 )
1490  CALL zlaset( 'Full', n, n, czero, cone, z, ldu )
1491 *
1492  ntest = 22
1493  CALL zstedc( 'I', n, d1, rwork( inde ), z, ldu, work, lwedc,
1494  \$ rwork( indrwk ), lrwedc, iwork, liwedc, iinfo )
1495  IF( iinfo.NE.0 ) THEN
1496  WRITE( nounit, fmt = 9999 )'ZSTEDC(I)', iinfo, n, jtype,
1497  \$ ioldsd
1498  info = abs( iinfo )
1499  IF( iinfo.LT.0 ) THEN
1500  return
1501  ELSE
1502  result( 22 ) = ulpinv
1503  go to 280
1504  END IF
1505  END IF
1506 *
1507 * Do Tests 22 and 23
1508 *
1509  CALL zstt21( n, 0, sd, se, d1, dumma, z, ldu, work, rwork,
1510  \$ result( 22 ) )
1511 *
1512 * Call ZSTEDC(V) to compute D1 and Z, do tests.
1513 *
1514 * Compute D1 and Z
1515 *
1516  CALL dcopy( n, sd, 1, d1, 1 )
1517  IF( n.GT.0 )
1518  \$ CALL dcopy( n-1, se, 1, rwork( inde ), 1 )
1519  CALL zlaset( 'Full', n, n, czero, cone, z, ldu )
1520 *
1521  ntest = 24
1522  CALL zstedc( 'V', n, d1, rwork( inde ), z, ldu, work, lwedc,
1523  \$ rwork( indrwk ), lrwedc, iwork, liwedc, iinfo )
1524  IF( iinfo.NE.0 ) THEN
1525  WRITE( nounit, fmt = 9999 )'ZSTEDC(V)', iinfo, n, jtype,
1526  \$ ioldsd
1527  info = abs( iinfo )
1528  IF( iinfo.LT.0 ) THEN
1529  return
1530  ELSE
1531  result( 24 ) = ulpinv
1532  go to 280
1533  END IF
1534  END IF
1535 *
1536 * Do Tests 24 and 25
1537 *
1538  CALL zstt21( n, 0, sd, se, d1, dumma, z, ldu, work, rwork,
1539  \$ result( 24 ) )
1540 *
1541 * Call ZSTEDC(N) to compute D2, do tests.
1542 *
1543 * Compute D2
1544 *
1545  CALL dcopy( n, sd, 1, d2, 1 )
1546  IF( n.GT.0 )
1547  \$ CALL dcopy( n-1, se, 1, rwork( inde ), 1 )
1548  CALL zlaset( 'Full', n, n, czero, cone, z, ldu )
1549 *
1550  ntest = 26
1551  CALL zstedc( 'N', n, d2, rwork( inde ), z, ldu, work, lwedc,
1552  \$ rwork( indrwk ), lrwedc, iwork, liwedc, iinfo )
1553  IF( iinfo.NE.0 ) THEN
1554  WRITE( nounit, fmt = 9999 )'ZSTEDC(N)', iinfo, n, jtype,
1555  \$ ioldsd
1556  info = abs( iinfo )
1557  IF( iinfo.LT.0 ) THEN
1558  return
1559  ELSE
1560  result( 26 ) = ulpinv
1561  go to 280
1562  END IF
1563  END IF
1564 *
1565 * Do Test 26
1566 *
1567  temp1 = zero
1568  temp2 = zero
1569 *
1570  DO 210 j = 1, n
1571  temp1 = max( temp1, abs( d1( j ) ), abs( d2( j ) ) )
1572  temp2 = max( temp2, abs( d1( j )-d2( j ) ) )
1573  210 continue
1574 *
1575  result( 26 ) = temp2 / max( unfl, ulp*max( temp1, temp2 ) )
1576 *
1577 * Only test ZSTEMR if IEEE compliant
1578 *
1579  IF( ilaenv( 10, 'ZSTEMR', 'VA', 1, 0, 0, 0 ).EQ.1 .AND.
1580  \$ ilaenv( 11, 'ZSTEMR', 'VA', 1, 0, 0, 0 ).EQ.1 ) THEN
1581 *
1582 * Call ZSTEMR, do test 27 (relative eigenvalue accuracy)
1583 *
1584 * If S is positive definite and diagonally dominant,
1585 * ask for all eigenvalues with high relative accuracy.
1586 *
1587  vl = zero
1588  vu = zero
1589  il = 0
1590  iu = 0
1591  IF( jtype.EQ.21 .AND. crel ) THEN
1592  ntest = 27
1593  abstol = unfl + unfl
1594  CALL zstemr( 'V', 'A', n, sd, se, vl, vu, il, iu,
1595  \$ m, wr, z, ldu, n, iwork( 1 ), tryrac,
1596  \$ rwork, lrwork, iwork( 2*n+1 ), lwork-2*n,
1597  \$ iinfo )
1598  IF( iinfo.NE.0 ) THEN
1599  WRITE( nounit, fmt = 9999 )'ZSTEMR(V,A,rel)',
1600  \$ iinfo, n, jtype, ioldsd
1601  info = abs( iinfo )
1602  IF( iinfo.LT.0 ) THEN
1603  return
1604  ELSE
1605  result( 27 ) = ulpinv
1606  go to 270
1607  END IF
1608  END IF
1609 *
1610 * Do test 27
1611 *
1612  temp2 = two*( two*n-one )*ulp*( one+eight*half**2 ) /
1613  \$ ( one-half )**4
1614 *
1615  temp1 = zero
1616  DO 220 j = 1, n
1617  temp1 = max( temp1, abs( d4( j )-wr( n-j+1 ) ) /
1618  \$ ( abstol+abs( d4( j ) ) ) )
1619  220 continue
1620 *
1621  result( 27 ) = temp1 / temp2
1622 *
1623  il = 1 + ( n-1 )*int( dlarnd( 1, iseed2 ) )
1624  iu = 1 + ( n-1 )*int( dlarnd( 1, iseed2 ) )
1625  IF( iu.LT.il ) THEN
1626  itemp = iu
1627  iu = il
1628  il = itemp
1629  END IF
1630 *
1631  IF( crange ) THEN
1632  ntest = 28
1633  abstol = unfl + unfl
1634  CALL zstemr( 'V', 'I', n, sd, se, vl, vu, il, iu,
1635  \$ m, wr, z, ldu, n, iwork( 1 ), tryrac,
1636  \$ rwork, lrwork, iwork( 2*n+1 ),
1637  \$ lwork-2*n, iinfo )
1638 *
1639  IF( iinfo.NE.0 ) THEN
1640  WRITE( nounit, fmt = 9999 )'ZSTEMR(V,I,rel)',
1641  \$ iinfo, n, jtype, ioldsd
1642  info = abs( iinfo )
1643  IF( iinfo.LT.0 ) THEN
1644  return
1645  ELSE
1646  result( 28 ) = ulpinv
1647  go to 270
1648  END IF
1649  END IF
1650 *
1651 *
1652 * Do test 28
1653 *
1654  temp2 = two*( two*n-one )*ulp*
1655  \$ ( one+eight*half**2 ) / ( one-half )**4
1656 *
1657  temp1 = zero
1658  DO 230 j = il, iu
1659  temp1 = max( temp1, abs( wr( j-il+1 )-d4( n-j+
1660  \$ 1 ) ) / ( abstol+abs( wr( j-il+1 ) ) ) )
1661  230 continue
1662 *
1663  result( 28 ) = temp1 / temp2
1664  ELSE
1665  result( 28 ) = zero
1666  END IF
1667  ELSE
1668  result( 27 ) = zero
1669  result( 28 ) = zero
1670  END IF
1671 *
1672 * Call ZSTEMR(V,I) to compute D1 and Z, do tests.
1673 *
1674 * Compute D1 and Z
1675 *
1676  CALL dcopy( n, sd, 1, d5, 1 )
1677  IF( n.GT.0 )
1678  \$ CALL dcopy( n-1, se, 1, rwork, 1 )
1679  CALL zlaset( 'Full', n, n, czero, cone, z, ldu )
1680 *
1681  IF( crange ) THEN
1682  ntest = 29
1683  il = 1 + ( n-1 )*int( dlarnd( 1, iseed2 ) )
1684  iu = 1 + ( n-1 )*int( dlarnd( 1, iseed2 ) )
1685  IF( iu.LT.il ) THEN
1686  itemp = iu
1687  iu = il
1688  il = itemp
1689  END IF
1690  CALL zstemr( 'V', 'I', n, d5, rwork, vl, vu, il, iu,
1691  \$ m, d1, z, ldu, n, iwork( 1 ), tryrac,
1692  \$ rwork( n+1 ), lrwork-n, iwork( 2*n+1 ),
1693  \$ liwork-2*n, iinfo )
1694  IF( iinfo.NE.0 ) THEN
1695  WRITE( nounit, fmt = 9999 )'ZSTEMR(V,I)', iinfo,
1696  \$ n, jtype, ioldsd
1697  info = abs( iinfo )
1698  IF( iinfo.LT.0 ) THEN
1699  return
1700  ELSE
1701  result( 29 ) = ulpinv
1702  go to 280
1703  END IF
1704  END IF
1705 *
1706 * Do Tests 29 and 30
1707 *
1708 *
1709 * Call ZSTEMR to compute D2, do tests.
1710 *
1711 * Compute D2
1712 *
1713  CALL dcopy( n, sd, 1, d5, 1 )
1714  IF( n.GT.0 )
1715  \$ CALL dcopy( n-1, se, 1, rwork, 1 )
1716 *
1717  ntest = 31
1718  CALL zstemr( 'N', 'I', n, d5, rwork, vl, vu, il, iu,
1719  \$ m, d2, z, ldu, n, iwork( 1 ), tryrac,
1720  \$ rwork( n+1 ), lrwork-n, iwork( 2*n+1 ),
1721  \$ liwork-2*n, iinfo )
1722  IF( iinfo.NE.0 ) THEN
1723  WRITE( nounit, fmt = 9999 )'ZSTEMR(N,I)', iinfo,
1724  \$ n, jtype, ioldsd
1725  info = abs( iinfo )
1726  IF( iinfo.LT.0 ) THEN
1727  return
1728  ELSE
1729  result( 31 ) = ulpinv
1730  go to 280
1731  END IF
1732  END IF
1733 *
1734 * Do Test 31
1735 *
1736  temp1 = zero
1737  temp2 = zero
1738 *
1739  DO 240 j = 1, iu - il + 1
1740  temp1 = max( temp1, abs( d1( j ) ),
1741  \$ abs( d2( j ) ) )
1742  temp2 = max( temp2, abs( d1( j )-d2( j ) ) )
1743  240 continue
1744 *
1745  result( 31 ) = temp2 / max( unfl,
1746  \$ ulp*max( temp1, temp2 ) )
1747 *
1748 *
1749 * Call ZSTEMR(V,V) to compute D1 and Z, do tests.
1750 *
1751 * Compute D1 and Z
1752 *
1753  CALL dcopy( n, sd, 1, d5, 1 )
1754  IF( n.GT.0 )
1755  \$ CALL dcopy( n-1, se, 1, rwork, 1 )
1756  CALL zlaset( 'Full', n, n, czero, cone, z, ldu )
1757 *
1758  ntest = 32
1759 *
1760  IF( n.GT.0 ) THEN
1761  IF( il.NE.1 ) THEN
1762  vl = d2( il ) - max( half*
1763  \$ ( d2( il )-d2( il-1 ) ), ulp*anorm,
1764  \$ two*rtunfl )
1765  ELSE
1766  vl = d2( 1 ) - max( half*( d2( n )-d2( 1 ) ),
1767  \$ ulp*anorm, two*rtunfl )
1768  END IF
1769  IF( iu.NE.n ) THEN
1770  vu = d2( iu ) + max( half*
1771  \$ ( d2( iu+1 )-d2( iu ) ), ulp*anorm,
1772  \$ two*rtunfl )
1773  ELSE
1774  vu = d2( n ) + max( half*( d2( n )-d2( 1 ) ),
1775  \$ ulp*anorm, two*rtunfl )
1776  END IF
1777  ELSE
1778  vl = zero
1779  vu = one
1780  END IF
1781 *
1782  CALL zstemr( 'V', 'V', n, d5, rwork, vl, vu, il, iu,
1783  \$ m, d1, z, ldu, m, iwork( 1 ), tryrac,
1784  \$ rwork( n+1 ), lrwork-n, iwork( 2*n+1 ),
1785  \$ liwork-2*n, iinfo )
1786  IF( iinfo.NE.0 ) THEN
1787  WRITE( nounit, fmt = 9999 )'ZSTEMR(V,V)', iinfo,
1788  \$ n, jtype, ioldsd
1789  info = abs( iinfo )
1790  IF( iinfo.LT.0 ) THEN
1791  return
1792  ELSE
1793  result( 32 ) = ulpinv
1794  go to 280
1795  END IF
1796  END IF
1797 *
1798 * Do Tests 32 and 33
1799 *
1800  CALL zstt22( n, m, 0, sd, se, d1, dumma, z, ldu, work,
1801  \$ m, rwork, result( 32 ) )
1802 *
1803 * Call ZSTEMR to compute D2, do tests.
1804 *
1805 * Compute D2
1806 *
1807  CALL dcopy( n, sd, 1, d5, 1 )
1808  IF( n.GT.0 )
1809  \$ CALL dcopy( n-1, se, 1, rwork, 1 )
1810 *
1811  ntest = 34
1812  CALL zstemr( 'N', 'V', n, d5, rwork, vl, vu, il, iu,
1813  \$ m, d2, z, ldu, n, iwork( 1 ), tryrac,
1814  \$ rwork( n+1 ), lrwork-n, iwork( 2*n+1 ),
1815  \$ liwork-2*n, iinfo )
1816  IF( iinfo.NE.0 ) THEN
1817  WRITE( nounit, fmt = 9999 )'ZSTEMR(N,V)', iinfo,
1818  \$ n, jtype, ioldsd
1819  info = abs( iinfo )
1820  IF( iinfo.LT.0 ) THEN
1821  return
1822  ELSE
1823  result( 34 ) = ulpinv
1824  go to 280
1825  END IF
1826  END IF
1827 *
1828 * Do Test 34
1829 *
1830  temp1 = zero
1831  temp2 = zero
1832 *
1833  DO 250 j = 1, iu - il + 1
1834  temp1 = max( temp1, abs( d1( j ) ),
1835  \$ abs( d2( j ) ) )
1836  temp2 = max( temp2, abs( d1( j )-d2( j ) ) )
1837  250 continue
1838 *
1839  result( 34 ) = temp2 / max( unfl,
1840  \$ ulp*max( temp1, temp2 ) )
1841  ELSE
1842  result( 29 ) = zero
1843  result( 30 ) = zero
1844  result( 31 ) = zero
1845  result( 32 ) = zero
1846  result( 33 ) = zero
1847  result( 34 ) = zero
1848  END IF
1849 *
1850 *
1851 * Call ZSTEMR(V,A) to compute D1 and Z, do tests.
1852 *
1853 * Compute D1 and Z
1854 *
1855  CALL dcopy( n, sd, 1, d5, 1 )
1856  IF( n.GT.0 )
1857  \$ CALL dcopy( n-1, se, 1, rwork, 1 )
1858 *
1859  ntest = 35
1860 *
1861  CALL zstemr( 'V', 'A', n, d5, rwork, vl, vu, il, iu,
1862  \$ m, d1, z, ldu, n, iwork( 1 ), tryrac,
1863  \$ rwork( n+1 ), lrwork-n, iwork( 2*n+1 ),
1864  \$ liwork-2*n, iinfo )
1865  IF( iinfo.NE.0 ) THEN
1866  WRITE( nounit, fmt = 9999 )'ZSTEMR(V,A)', iinfo, n,
1867  \$ jtype, ioldsd
1868  info = abs( iinfo )
1869  IF( iinfo.LT.0 ) THEN
1870  return
1871  ELSE
1872  result( 35 ) = ulpinv
1873  go to 280
1874  END IF
1875  END IF
1876 *
1877 * Do Tests 35 and 36
1878 *
1879  CALL zstt22( n, m, 0, sd, se, d1, dumma, z, ldu, work, m,
1880  \$ rwork, result( 35 ) )
1881 *
1882 * Call ZSTEMR to compute D2, do tests.
1883 *
1884 * Compute D2
1885 *
1886  CALL dcopy( n, sd, 1, d5, 1 )
1887  IF( n.GT.0 )
1888  \$ CALL dcopy( n-1, se, 1, rwork, 1 )
1889 *
1890  ntest = 37
1891  CALL zstemr( 'N', 'A', n, d5, rwork, vl, vu, il, iu,
1892  \$ m, d2, z, ldu, n, iwork( 1 ), tryrac,
1893  \$ rwork( n+1 ), lrwork-n, iwork( 2*n+1 ),
1894  \$ liwork-2*n, iinfo )
1895  IF( iinfo.NE.0 ) THEN
1896  WRITE( nounit, fmt = 9999 )'ZSTEMR(N,A)', iinfo, n,
1897  \$ jtype, ioldsd
1898  info = abs( iinfo )
1899  IF( iinfo.LT.0 ) THEN
1900  return
1901  ELSE
1902  result( 37 ) = ulpinv
1903  go to 280
1904  END IF
1905  END IF
1906 *
1907 * Do Test 34
1908 *
1909  temp1 = zero
1910  temp2 = zero
1911 *
1912  DO 260 j = 1, n
1913  temp1 = max( temp1, abs( d1( j ) ), abs( d2( j ) ) )
1914  temp2 = max( temp2, abs( d1( j )-d2( j ) ) )
1915  260 continue
1916 *
1917  result( 37 ) = temp2 / max( unfl,
1918  \$ ulp*max( temp1, temp2 ) )
1919  END IF
1920  270 continue
1921  280 continue
1922  ntestt = ntestt + ntest
1923 *
1924 * End of Loop -- Check for RESULT(j) > THRESH
1925 *
1926 *
1927 * Print out tests which fail.
1928 *
1929  DO 290 jr = 1, ntest
1930  IF( result( jr ).GE.thresh ) THEN
1931 *
1932 * If this is the first test to fail,
1933 * print a header to the data file.
1934 *
1935  IF( nerrs.EQ.0 ) THEN
1936  WRITE( nounit, fmt = 9998 )'ZST'
1937  WRITE( nounit, fmt = 9997 )
1938  WRITE( nounit, fmt = 9996 )
1939  WRITE( nounit, fmt = 9995 )'Hermitian'
1940  WRITE( nounit, fmt = 9994 )
1941 *
1942 * Tests performed
1943 *
1944  WRITE( nounit, fmt = 9987 )
1945  END IF
1946  nerrs = nerrs + 1
1947  IF( result( jr ).LT.10000.0d0 ) THEN
1948  WRITE( nounit, fmt = 9989 )n, jtype, ioldsd, jr,
1949  \$ result( jr )
1950  ELSE
1951  WRITE( nounit, fmt = 9988 )n, jtype, ioldsd, jr,
1952  \$ result( jr )
1953  END IF
1954  END IF
1955  290 continue
1956  300 continue
1957  310 continue
1958 *
1959 * Summary
1960 *
1961  CALL dlasum( 'ZST', nounit, nerrs, ntestt )
1962  return
1963 *
1964  9999 format( ' ZCHKST: ', a, ' returned INFO=', i6, '.', / 9x, 'N=',
1965  \$ i6, ', JTYPE=', i6, ', ISEED=(', 3( i5, ',' ), i5, ')' )
1966 *
1967  9998 format( / 1x, a3, ' -- Complex Hermitian eigenvalue problem' )
1968  9997 format( ' Matrix types (see ZCHKST for details): ' )
1969 *
1970  9996 format( / ' Special Matrices:',
1971  \$ / ' 1=Zero matrix. ',
1972  \$ ' 5=Diagonal: clustered entries.',
1973  \$ / ' 2=Identity matrix. ',
1974  \$ ' 6=Diagonal: large, evenly spaced.',
1975  \$ / ' 3=Diagonal: evenly spaced entries. ',
1976  \$ ' 7=Diagonal: small, evenly spaced.',
1977  \$ / ' 4=Diagonal: geometr. spaced entries.' )
1978  9995 format( ' Dense ', a, ' Matrices:',
1979  \$ / ' 8=Evenly spaced eigenvals. ',
1980  \$ ' 12=Small, evenly spaced eigenvals.',
1981  \$ / ' 9=Geometrically spaced eigenvals. ',
1982  \$ ' 13=Matrix with random O(1) entries.',
1983  \$ / ' 10=Clustered eigenvalues. ',
1984  \$ ' 14=Matrix with large random entries.',
1985  \$ / ' 11=Large, evenly spaced eigenvals. ',
1986  \$ ' 15=Matrix with small random entries.' )
1987  9994 format( ' 16=Positive definite, evenly spaced eigenvalues',
1988  \$ / ' 17=Positive definite, geometrically spaced eigenvlaues',
1989  \$ / ' 18=Positive definite, clustered eigenvalues',
1990  \$ / ' 19=Positive definite, small evenly spaced eigenvalues',
1991  \$ / ' 20=Positive definite, large evenly spaced eigenvalues',
1992  \$ / ' 21=Diagonally dominant tridiagonal, geometrically',
1993  \$ ' spaced eigenvalues' )
1994 *
1995  9989 format( ' Matrix order=', i5, ', type=', i2, ', seed=',
1996  \$ 4( i4, ',' ), ' result ', i3, ' is', 0p, f8.2 )
1997  9988 format( ' Matrix order=', i5, ', type=', i2, ', seed=',
1998  \$ 4( i4, ',' ), ' result ', i3, ' is', 1p, d10.3 )
1999 *
2000  9987 format( / 'Test performed: see ZCHKST for details.', / )
2001 * End of ZCHKST
2002 *
2003  END