LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
zgttrf.f
Go to the documentation of this file.
1 *> \brief \b ZGTTRF
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download ZGTTRF + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgttrf.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgttrf.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgttrf.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE ZGTTRF( N, DL, D, DU, DU2, IPIV, INFO )
22 *
23 * .. Scalar Arguments ..
24 * INTEGER INFO, N
25 * ..
26 * .. Array Arguments ..
27 * INTEGER IPIV( * )
28 * COMPLEX*16 D( * ), DL( * ), DU( * ), DU2( * )
29 * ..
30 *
31 *
32 *> \par Purpose:
33 * =============
34 *>
35 *> \verbatim
36 *>
37 *> ZGTTRF computes an LU factorization of a complex tridiagonal matrix A
38 *> using elimination with partial pivoting and row interchanges.
39 *>
40 *> The factorization has the form
41 *> A = L * U
42 *> where L is a product of permutation and unit lower bidiagonal
43 *> matrices and U is upper triangular with nonzeros in only the main
44 *> diagonal and first two superdiagonals.
45 *> \endverbatim
46 *
47 * Arguments:
48 * ==========
49 *
50 *> \param[in] N
51 *> \verbatim
52 *> N is INTEGER
53 *> The order of the matrix A.
54 *> \endverbatim
55 *>
56 *> \param[in,out] DL
57 *> \verbatim
58 *> DL is COMPLEX*16 array, dimension (N-1)
59 *> On entry, DL must contain the (n-1) sub-diagonal elements of
60 *> A.
61 *>
62 *> On exit, DL is overwritten by the (n-1) multipliers that
63 *> define the matrix L from the LU factorization of A.
64 *> \endverbatim
65 *>
66 *> \param[in,out] D
67 *> \verbatim
68 *> D is COMPLEX*16 array, dimension (N)
69 *> On entry, D must contain the diagonal elements of A.
70 *>
71 *> On exit, D is overwritten by the n diagonal elements of the
72 *> upper triangular matrix U from the LU factorization of A.
73 *> \endverbatim
74 *>
75 *> \param[in,out] DU
76 *> \verbatim
77 *> DU is COMPLEX*16 array, dimension (N-1)
78 *> On entry, DU must contain the (n-1) super-diagonal elements
79 *> of A.
80 *>
81 *> On exit, DU is overwritten by the (n-1) elements of the first
82 *> super-diagonal of U.
83 *> \endverbatim
84 *>
85 *> \param[out] DU2
86 *> \verbatim
87 *> DU2 is COMPLEX*16 array, dimension (N-2)
88 *> On exit, DU2 is overwritten by the (n-2) elements of the
89 *> second super-diagonal of U.
90 *> \endverbatim
91 *>
92 *> \param[out] IPIV
93 *> \verbatim
94 *> IPIV is INTEGER array, dimension (N)
95 *> The pivot indices; for 1 <= i <= n, row i of the matrix was
96 *> interchanged with row IPIV(i). IPIV(i) will always be either
97 *> i or i+1; IPIV(i) = i indicates a row interchange was not
98 *> required.
99 *> \endverbatim
100 *>
101 *> \param[out] INFO
102 *> \verbatim
103 *> INFO is INTEGER
104 *> = 0: successful exit
105 *> < 0: if INFO = -k, the k-th argument had an illegal value
106 *> > 0: if INFO = k, U(k,k) is exactly zero. The factorization
107 *> has been completed, but the factor U is exactly
108 *> singular, and division by zero will occur if it is used
109 *> to solve a system of equations.
110 *> \endverbatim
111 *
112 * Authors:
113 * ========
114 *
115 *> \author Univ. of Tennessee
116 *> \author Univ. of California Berkeley
117 *> \author Univ. of Colorado Denver
118 *> \author NAG Ltd.
119 *
120 *> \date September 2012
121 *
122 *> \ingroup complex16GTcomputational
123 *
124 * =====================================================================
125  SUBROUTINE zgttrf( N, DL, D, DU, DU2, IPIV, INFO )
126 *
127 * -- LAPACK computational routine (version 3.4.2) --
128 * -- LAPACK is a software package provided by Univ. of Tennessee, --
129 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
130 * September 2012
131 *
132 * .. Scalar Arguments ..
133  INTEGER info, n
134 * ..
135 * .. Array Arguments ..
136  INTEGER ipiv( * )
137  COMPLEX*16 d( * ), dl( * ), du( * ), du2( * )
138 * ..
139 *
140 * =====================================================================
141 *
142 * .. Parameters ..
143  DOUBLE PRECISION zero
144  parameter( zero = 0.0d+0 )
145 * ..
146 * .. Local Scalars ..
147  INTEGER i
148  COMPLEX*16 fact, temp, zdum
149 * ..
150 * .. External Subroutines ..
151  EXTERNAL xerbla
152 * ..
153 * .. Intrinsic Functions ..
154  INTRINSIC abs, dble, dimag
155 * ..
156 * .. Statement Functions ..
157  DOUBLE PRECISION cabs1
158 * ..
159 * .. Statement Function definitions ..
160  cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
161 * ..
162 * .. Executable Statements ..
163 *
164  info = 0
165  IF( n.LT.0 ) THEN
166  info = -1
167  CALL xerbla( 'ZGTTRF', -info )
168  return
169  END IF
170 *
171 * Quick return if possible
172 *
173  IF( n.EQ.0 )
174  $ return
175 *
176 * Initialize IPIV(i) = i and DU2(i) = 0
177 *
178  DO 10 i = 1, n
179  ipiv( i ) = i
180  10 continue
181  DO 20 i = 1, n - 2
182  du2( i ) = zero
183  20 continue
184 *
185  DO 30 i = 1, n - 2
186  IF( cabs1( d( i ) ).GE.cabs1( dl( i ) ) ) THEN
187 *
188 * No row interchange required, eliminate DL(I)
189 *
190  IF( cabs1( d( i ) ).NE.zero ) THEN
191  fact = dl( i ) / d( i )
192  dl( i ) = fact
193  d( i+1 ) = d( i+1 ) - fact*du( i )
194  END IF
195  ELSE
196 *
197 * Interchange rows I and I+1, eliminate DL(I)
198 *
199  fact = d( i ) / dl( i )
200  d( i ) = dl( i )
201  dl( i ) = fact
202  temp = du( i )
203  du( i ) = d( i+1 )
204  d( i+1 ) = temp - fact*d( i+1 )
205  du2( i ) = du( i+1 )
206  du( i+1 ) = -fact*du( i+1 )
207  ipiv( i ) = i + 1
208  END IF
209  30 continue
210  IF( n.GT.1 ) THEN
211  i = n - 1
212  IF( cabs1( d( i ) ).GE.cabs1( dl( i ) ) ) THEN
213  IF( cabs1( d( i ) ).NE.zero ) THEN
214  fact = dl( i ) / d( i )
215  dl( i ) = fact
216  d( i+1 ) = d( i+1 ) - fact*du( i )
217  END IF
218  ELSE
219  fact = d( i ) / dl( i )
220  d( i ) = dl( i )
221  dl( i ) = fact
222  temp = du( i )
223  du( i ) = d( i+1 )
224  d( i+1 ) = temp - fact*d( i+1 )
225  ipiv( i ) = i + 1
226  END IF
227  END IF
228 *
229 * Check for a zero on the diagonal of U.
230 *
231  DO 40 i = 1, n
232  IF( cabs1( d( i ) ).EQ.zero ) THEN
233  info = i
234  go to 50
235  END IF
236  40 continue
237  50 continue
238 *
239  return
240 *
241 * End of ZGTTRF
242 *
243  END