LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
dsxt1.f
Go to the documentation of this file.
1 *> \brief \b DSXT1
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * DOUBLE PRECISION FUNCTION DSXT1( IJOB, D1, N1, D2, N2, ABSTOL,
12 * ULP, UNFL )
13 *
14 * .. Scalar Arguments ..
15 * INTEGER IJOB, N1, N2
16 * DOUBLE PRECISION ABSTOL, ULP, UNFL
17 * ..
18 * .. Array Arguments ..
19 * DOUBLE PRECISION D1( * ), D2( * )
20 * ..
21 *
22 *
23 *> \par Purpose:
24 * =============
25 *>
26 *> \verbatim
27 *>
28 *> DSXT1 computes the difference between a set of eigenvalues.
29 *> The result is returned as the function value.
30 *>
31 *> IJOB = 1: Computes max { min | D1(i)-D2(j) | }
32 *> i j
33 *>
34 *> IJOB = 2: Computes max { min | D1(i)-D2(j) | /
35 *> i j
36 *> ( ABSTOL + |D1(i)|*ULP ) }
37 *> \endverbatim
38 *
39 * Arguments:
40 * ==========
41 *
42 *> \param[in] IJOB
43 *> \verbatim
44 *> IJOB is INTEGER
45 *> Specifies the type of tests to be performed. (See above.)
46 *> \endverbatim
47 *>
48 *> \param[in] D1
49 *> \verbatim
50 *> D1 is DOUBLE PRECISION array, dimension (N1)
51 *> The first array. D1 should be in increasing order, i.e.,
52 *> D1(j) <= D1(j+1).
53 *> \endverbatim
54 *>
55 *> \param[in] N1
56 *> \verbatim
57 *> N1 is INTEGER
58 *> The length of D1.
59 *> \endverbatim
60 *>
61 *> \param[in] D2
62 *> \verbatim
63 *> D2 is DOUBLE PRECISION array, dimension (N2)
64 *> The second array. D2 should be in increasing order, i.e.,
65 *> D2(j) <= D2(j+1).
66 *> \endverbatim
67 *>
68 *> \param[in] N2
69 *> \verbatim
70 *> N2 is INTEGER
71 *> The length of D2.
72 *> \endverbatim
73 *>
74 *> \param[in] ABSTOL
75 *> \verbatim
76 *> ABSTOL is DOUBLE PRECISION
77 *> The absolute tolerance, used as a measure of the error.
78 *> \endverbatim
79 *>
80 *> \param[in] ULP
81 *> \verbatim
82 *> ULP is DOUBLE PRECISION
83 *> Machine precision.
84 *> \endverbatim
85 *>
86 *> \param[in] UNFL
87 *> \verbatim
88 *> UNFL is DOUBLE PRECISION
89 *> The smallest positive number whose reciprocal does not
90 *> overflow.
91 *> \endverbatim
92 *
93 * Authors:
94 * ========
95 *
96 *> \author Univ. of Tennessee
97 *> \author Univ. of California Berkeley
98 *> \author Univ. of Colorado Denver
99 *> \author NAG Ltd.
100 *
101 *> \date November 2011
102 *
103 *> \ingroup double_eig
104 *
105 * =====================================================================
106  DOUBLE PRECISION FUNCTION dsxt1( IJOB, D1, N1, D2, N2, ABSTOL,
107  $ ulp, unfl )
108 *
109 * -- LAPACK test routine (version 3.4.0) --
110 * -- LAPACK is a software package provided by Univ. of Tennessee, --
111 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
112 * November 2011
113 *
114 * .. Scalar Arguments ..
115  INTEGER ijob, n1, n2
116  DOUBLE PRECISION abstol, ulp, unfl
117 * ..
118 * .. Array Arguments ..
119  DOUBLE PRECISION d1( * ), d2( * )
120 * ..
121 *
122 * =====================================================================
123 *
124 * .. Parameters ..
125  DOUBLE PRECISION zero
126  parameter( zero = 0.0d0 )
127 * ..
128 * .. Local Scalars ..
129  INTEGER i, j
130  DOUBLE PRECISION temp1, temp2
131 * ..
132 * .. Intrinsic Functions ..
133  INTRINSIC abs, max, min
134 * ..
135 * .. Executable Statements ..
136 *
137  temp1 = zero
138 *
139  j = 1
140  DO 20 i = 1, n1
141  10 continue
142  IF( d2( j ).LT.d1( i ) .AND. j.LT.n2 ) THEN
143  j = j + 1
144  go to 10
145  END IF
146  IF( j.EQ.1 ) THEN
147  temp2 = abs( d2( j )-d1( i ) )
148  IF( ijob.EQ.2 )
149  $ temp2 = temp2 / max( unfl, abstol+ulp*abs( d1( i ) ) )
150  ELSE
151  temp2 = min( abs( d2( j )-d1( i ) ),
152  $ abs( d1( i )-d2( j-1 ) ) )
153  IF( ijob.EQ.2 )
154  $ temp2 = temp2 / max( unfl, abstol+ulp*abs( d1( i ) ) )
155  END IF
156  temp1 = max( temp1, temp2 )
157  20 continue
158 *
159  dsxt1 = temp1
160  return
161 *
162 * End of DSXT1
163 *
164  END