LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
stpcon.f
Go to the documentation of this file.
1 *> \brief \b STPCON
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download STPCON + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stpcon.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stpcon.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stpcon.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE STPCON( NORM, UPLO, DIAG, N, AP, RCOND, WORK, IWORK,
22 * INFO )
23 *
24 * .. Scalar Arguments ..
25 * CHARACTER DIAG, NORM, UPLO
26 * INTEGER INFO, N
27 * REAL RCOND
28 * ..
29 * .. Array Arguments ..
30 * INTEGER IWORK( * )
31 * REAL AP( * ), WORK( * )
32 * ..
33 *
34 *
35 *> \par Purpose:
36 * =============
37 *>
38 *> \verbatim
39 *>
40 *> STPCON estimates the reciprocal of the condition number of a packed
41 *> triangular matrix A, in either the 1-norm or the infinity-norm.
42 *>
43 *> The norm of A is computed and an estimate is obtained for
44 *> norm(inv(A)), then the reciprocal of the condition number is
45 *> computed as
46 *> RCOND = 1 / ( norm(A) * norm(inv(A)) ).
47 *> \endverbatim
48 *
49 * Arguments:
50 * ==========
51 *
52 *> \param[in] NORM
53 *> \verbatim
54 *> NORM is CHARACTER*1
55 *> Specifies whether the 1-norm condition number or the
56 *> infinity-norm condition number is required:
57 *> = '1' or 'O': 1-norm;
58 *> = 'I': Infinity-norm.
59 *> \endverbatim
60 *>
61 *> \param[in] UPLO
62 *> \verbatim
63 *> UPLO is CHARACTER*1
64 *> = 'U': A is upper triangular;
65 *> = 'L': A is lower triangular.
66 *> \endverbatim
67 *>
68 *> \param[in] DIAG
69 *> \verbatim
70 *> DIAG is CHARACTER*1
71 *> = 'N': A is non-unit triangular;
72 *> = 'U': A is unit triangular.
73 *> \endverbatim
74 *>
75 *> \param[in] N
76 *> \verbatim
77 *> N is INTEGER
78 *> The order of the matrix A. N >= 0.
79 *> \endverbatim
80 *>
81 *> \param[in] AP
82 *> \verbatim
83 *> AP is REAL array, dimension (N*(N+1)/2)
84 *> The upper or lower triangular matrix A, packed columnwise in
85 *> a linear array. The j-th column of A is stored in the array
86 *> AP as follows:
87 *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
88 *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
89 *> If DIAG = 'U', the diagonal elements of A are not referenced
90 *> and are assumed to be 1.
91 *> \endverbatim
92 *>
93 *> \param[out] RCOND
94 *> \verbatim
95 *> RCOND is REAL
96 *> The reciprocal of the condition number of the matrix A,
97 *> computed as RCOND = 1/(norm(A) * norm(inv(A))).
98 *> \endverbatim
99 *>
100 *> \param[out] WORK
101 *> \verbatim
102 *> WORK is REAL array, dimension (3*N)
103 *> \endverbatim
104 *>
105 *> \param[out] IWORK
106 *> \verbatim
107 *> IWORK is INTEGER array, dimension (N)
108 *> \endverbatim
109 *>
110 *> \param[out] INFO
111 *> \verbatim
112 *> INFO is INTEGER
113 *> = 0: successful exit
114 *> < 0: if INFO = -i, the i-th argument had an illegal value
115 *> \endverbatim
116 *
117 * Authors:
118 * ========
119 *
120 *> \author Univ. of Tennessee
121 *> \author Univ. of California Berkeley
122 *> \author Univ. of Colorado Denver
123 *> \author NAG Ltd.
124 *
125 *> \date November 2011
126 *
127 *> \ingroup realOTHERcomputational
128 *
129 * =====================================================================
130  SUBROUTINE stpcon( NORM, UPLO, DIAG, N, AP, RCOND, WORK, IWORK,
131  $ info )
132 *
133 * -- LAPACK computational routine (version 3.4.0) --
134 * -- LAPACK is a software package provided by Univ. of Tennessee, --
135 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
136 * November 2011
137 *
138 * .. Scalar Arguments ..
139  CHARACTER diag, norm, uplo
140  INTEGER info, n
141  REAL rcond
142 * ..
143 * .. Array Arguments ..
144  INTEGER iwork( * )
145  REAL ap( * ), work( * )
146 * ..
147 *
148 * =====================================================================
149 *
150 * .. Parameters ..
151  REAL one, zero
152  parameter( one = 1.0e+0, zero = 0.0e+0 )
153 * ..
154 * .. Local Scalars ..
155  LOGICAL nounit, onenrm, upper
156  CHARACTER normin
157  INTEGER ix, kase, kase1
158  REAL ainvnm, anorm, scale, smlnum, xnorm
159 * ..
160 * .. Local Arrays ..
161  INTEGER isave( 3 )
162 * ..
163 * .. External Functions ..
164  LOGICAL lsame
165  INTEGER isamax
166  REAL slamch, slantp
167  EXTERNAL lsame, isamax, slamch, slantp
168 * ..
169 * .. External Subroutines ..
170  EXTERNAL slacn2, slatps, srscl, xerbla
171 * ..
172 * .. Intrinsic Functions ..
173  INTRINSIC abs, max, real
174 * ..
175 * .. Executable Statements ..
176 *
177 * Test the input parameters.
178 *
179  info = 0
180  upper = lsame( uplo, 'U' )
181  onenrm = norm.EQ.'1' .OR. lsame( norm, 'O' )
182  nounit = lsame( diag, 'N' )
183 *
184  IF( .NOT.onenrm .AND. .NOT.lsame( norm, 'I' ) ) THEN
185  info = -1
186  ELSE IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
187  info = -2
188  ELSE IF( .NOT.nounit .AND. .NOT.lsame( diag, 'U' ) ) THEN
189  info = -3
190  ELSE IF( n.LT.0 ) THEN
191  info = -4
192  END IF
193  IF( info.NE.0 ) THEN
194  CALL xerbla( 'STPCON', -info )
195  return
196  END IF
197 *
198 * Quick return if possible
199 *
200  IF( n.EQ.0 ) THEN
201  rcond = one
202  return
203  END IF
204 *
205  rcond = zero
206  smlnum = slamch( 'Safe minimum' )*REAL( MAX( 1, N ) )
207 *
208 * Compute the norm of the triangular matrix A.
209 *
210  anorm = slantp( norm, uplo, diag, n, ap, work )
211 *
212 * Continue only if ANORM > 0.
213 *
214  IF( anorm.GT.zero ) THEN
215 *
216 * Estimate the norm of the inverse of A.
217 *
218  ainvnm = zero
219  normin = 'N'
220  IF( onenrm ) THEN
221  kase1 = 1
222  ELSE
223  kase1 = 2
224  END IF
225  kase = 0
226  10 continue
227  CALL slacn2( n, work( n+1 ), work, iwork, ainvnm, kase, isave )
228  IF( kase.NE.0 ) THEN
229  IF( kase.EQ.kase1 ) THEN
230 *
231 * Multiply by inv(A).
232 *
233  CALL slatps( uplo, 'No transpose', diag, normin, n, ap,
234  $ work, scale, work( 2*n+1 ), info )
235  ELSE
236 *
237 * Multiply by inv(A**T).
238 *
239  CALL slatps( uplo, 'Transpose', diag, normin, n, ap,
240  $ work, scale, work( 2*n+1 ), info )
241  END IF
242  normin = 'Y'
243 *
244 * Multiply by 1/SCALE if doing so will not cause overflow.
245 *
246  IF( scale.NE.one ) THEN
247  ix = isamax( n, work, 1 )
248  xnorm = abs( work( ix ) )
249  IF( scale.LT.xnorm*smlnum .OR. scale.EQ.zero )
250  $ go to 20
251  CALL srscl( n, scale, work, 1 )
252  END IF
253  go to 10
254  END IF
255 *
256 * Compute the estimate of the reciprocal condition number.
257 *
258  IF( ainvnm.NE.zero )
259  $ rcond = ( one / anorm ) / ainvnm
260  END IF
261 *
262  20 continue
263  return
264 *
265 * End of STPCON
266 *
267  END