LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
schkqr.f
Go to the documentation of this file.
1 *> \brief \b SCHKQR
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE SCHKQR( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL,
12 * NRHS, THRESH, TSTERR, NMAX, A, AF, AQ, AR, AC,
13 * B, X, XACT, TAU, WORK, RWORK, IWORK, NOUT )
14 *
15 * .. Scalar Arguments ..
16 * LOGICAL TSTERR
17 * INTEGER NM, NMAX, NN, NNB, NOUT, NRHS
18 * REAL THRESH
19 * ..
20 * .. Array Arguments ..
21 * LOGICAL DOTYPE( * )
22 * INTEGER IWORK( * ), MVAL( * ), NBVAL( * ), NVAL( * ),
23 * $ NXVAL( * )
24 * REAL A( * ), AC( * ), AF( * ), AQ( * ), AR( * ),
25 * $ B( * ), RWORK( * ), TAU( * ), WORK( * ),
26 * $ X( * ), XACT( * )
27 * ..
28 *
29 *
30 *> \par Purpose:
31 * =============
32 *>
33 *> \verbatim
34 *>
35 *> SCHKQR tests SGEQRF, SORGQR and SORMQR.
36 *> \endverbatim
37 *
38 * Arguments:
39 * ==========
40 *
41 *> \param[in] DOTYPE
42 *> \verbatim
43 *> DOTYPE is LOGICAL array, dimension (NTYPES)
44 *> The matrix types to be used for testing. Matrices of type j
45 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
46 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
47 *> \endverbatim
48 *>
49 *> \param[in] NM
50 *> \verbatim
51 *> NM is INTEGER
52 *> The number of values of M contained in the vector MVAL.
53 *> \endverbatim
54 *>
55 *> \param[in] MVAL
56 *> \verbatim
57 *> MVAL is INTEGER array, dimension (NM)
58 *> The values of the matrix row dimension M.
59 *> \endverbatim
60 *>
61 *> \param[in] NN
62 *> \verbatim
63 *> NN is INTEGER
64 *> The number of values of N contained in the vector NVAL.
65 *> \endverbatim
66 *>
67 *> \param[in] NVAL
68 *> \verbatim
69 *> NVAL is INTEGER array, dimension (NN)
70 *> The values of the matrix column dimension N.
71 *> \endverbatim
72 *>
73 *> \param[in] NNB
74 *> \verbatim
75 *> NNB is INTEGER
76 *> The number of values of NB and NX contained in the
77 *> vectors NBVAL and NXVAL. The blocking parameters are used
78 *> in pairs (NB,NX).
79 *> \endverbatim
80 *>
81 *> \param[in] NBVAL
82 *> \verbatim
83 *> NBVAL is INTEGER array, dimension (NNB)
84 *> The values of the blocksize NB.
85 *> \endverbatim
86 *>
87 *> \param[in] NXVAL
88 *> \verbatim
89 *> NXVAL is INTEGER array, dimension (NNB)
90 *> The values of the crossover point NX.
91 *> \endverbatim
92 *>
93 *> \param[in] NRHS
94 *> \verbatim
95 *> NRHS is INTEGER
96 *> The number of right hand side vectors to be generated for
97 *> each linear system.
98 *> \endverbatim
99 *>
100 *> \param[in] THRESH
101 *> \verbatim
102 *> THRESH is REAL
103 *> The threshold value for the test ratios. A result is
104 *> included in the output file if RESULT >= THRESH. To have
105 *> every test ratio printed, use THRESH = 0.
106 *> \endverbatim
107 *>
108 *> \param[in] TSTERR
109 *> \verbatim
110 *> TSTERR is LOGICAL
111 *> Flag that indicates whether error exits are to be tested.
112 *> \endverbatim
113 *>
114 *> \param[in] NMAX
115 *> \verbatim
116 *> NMAX is INTEGER
117 *> The maximum value permitted for M or N, used in dimensioning
118 *> the work arrays.
119 *> \endverbatim
120 *>
121 *> \param[out] A
122 *> \verbatim
123 *> A is REAL array, dimension (NMAX*NMAX)
124 *> \endverbatim
125 *>
126 *> \param[out] AF
127 *> \verbatim
128 *> AF is REAL array, dimension (NMAX*NMAX)
129 *> \endverbatim
130 *>
131 *> \param[out] AQ
132 *> \verbatim
133 *> AQ is REAL array, dimension (NMAX*NMAX)
134 *> \endverbatim
135 *>
136 *> \param[out] AR
137 *> \verbatim
138 *> AR is REAL array, dimension (NMAX*NMAX)
139 *> \endverbatim
140 *>
141 *> \param[out] AC
142 *> \verbatim
143 *> AC is REAL array, dimension (NMAX*NMAX)
144 *> \endverbatim
145 *>
146 *> \param[out] B
147 *> \verbatim
148 *> B is REAL array, dimension (NMAX*NRHS)
149 *> \endverbatim
150 *>
151 *> \param[out] X
152 *> \verbatim
153 *> X is REAL array, dimension (NMAX*NRHS)
154 *> \endverbatim
155 *>
156 *> \param[out] XACT
157 *> \verbatim
158 *> XACT is REAL array, dimension (NMAX*NRHS)
159 *> \endverbatim
160 *>
161 *> \param[out] TAU
162 *> \verbatim
163 *> TAU is REAL array, dimension (NMAX)
164 *> \endverbatim
165 *>
166 *> \param[out] WORK
167 *> \verbatim
168 *> WORK is REAL array, dimension (NMAX*NMAX)
169 *> \endverbatim
170 *>
171 *> \param[out] RWORK
172 *> \verbatim
173 *> RWORK is REAL array, dimension (NMAX)
174 *> \endverbatim
175 *>
176 *> \param[out] IWORK
177 *> \verbatim
178 *> IWORK is INTEGER array, dimension (NMAX)
179 *> \endverbatim
180 *>
181 *> \param[in] NOUT
182 *> \verbatim
183 *> NOUT is INTEGER
184 *> The unit number for output.
185 *> \endverbatim
186 *
187 * Authors:
188 * ========
189 *
190 *> \author Univ. of Tennessee
191 *> \author Univ. of California Berkeley
192 *> \author Univ. of Colorado Denver
193 *> \author NAG Ltd.
194 *
195 *> \date November 2011
196 *
197 *> \ingroup single_lin
198 *
199 * =====================================================================
200  SUBROUTINE schkqr( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL,
201  $ nrhs, thresh, tsterr, nmax, a, af, aq, ar, ac,
202  $ b, x, xact, tau, work, rwork, iwork, nout )
203 *
204 * -- LAPACK test routine (version 3.4.0) --
205 * -- LAPACK is a software package provided by Univ. of Tennessee, --
206 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
207 * November 2011
208 *
209 * .. Scalar Arguments ..
210  LOGICAL tsterr
211  INTEGER nm, nmax, nn, nnb, nout, nrhs
212  REAL thresh
213 * ..
214 * .. Array Arguments ..
215  LOGICAL dotype( * )
216  INTEGER iwork( * ), mval( * ), nbval( * ), nval( * ),
217  $ nxval( * )
218  REAL a( * ), ac( * ), af( * ), aq( * ), ar( * ),
219  $ b( * ), rwork( * ), tau( * ), work( * ),
220  $ x( * ), xact( * )
221 * ..
222 *
223 * =====================================================================
224 *
225 * .. Parameters ..
226  INTEGER ntests
227  parameter( ntests = 9 )
228  INTEGER ntypes
229  parameter( ntypes = 8 )
230  REAL zero
231  parameter( zero = 0.0e0 )
232 * ..
233 * .. Local Scalars ..
234  CHARACTER dist, type
235  CHARACTER*3 path
236  INTEGER i, ik, im, imat, in, inb, info, k, kl, ku, lda,
237  $ lwork, m, minmn, mode, n, nb, nerrs, nfail, nk,
238  $ nrun, nt, nx
239  REAL anorm, cndnum
240 * ..
241 * .. Local Arrays ..
242  INTEGER iseed( 4 ), iseedy( 4 ), kval( 4 )
243  REAL result( ntests )
244 * ..
245 * .. External Functions ..
246  LOGICAL sgennd
247  EXTERNAL sgennd
248 * ..
249 * .. External Subroutines ..
250  EXTERNAL alaerh, alahd, alasum, serrqr, sgeqrs, sget02,
253 * ..
254 * .. Intrinsic Functions ..
255  INTRINSIC max, min
256 * ..
257 * .. Scalars in Common ..
258  LOGICAL lerr, ok
259  CHARACTER*32 srnamt
260  INTEGER infot, nunit
261 * ..
262 * .. Common blocks ..
263  common / infoc / infot, nunit, ok, lerr
264  common / srnamc / srnamt
265 * ..
266 * .. Data statements ..
267  DATA iseedy / 1988, 1989, 1990, 1991 /
268 * ..
269 * .. Executable Statements ..
270 *
271 * Initialize constants and the random number seed.
272 *
273  path( 1: 1 ) = 'Single precision'
274  path( 2: 3 ) = 'QR'
275  nrun = 0
276  nfail = 0
277  nerrs = 0
278  DO 10 i = 1, 4
279  iseed( i ) = iseedy( i )
280  10 continue
281 *
282 * Test the error exits
283 *
284  IF( tsterr )
285  $ CALL serrqr( path, nout )
286  infot = 0
287  CALL xlaenv( 2, 2 )
288 *
289  lda = nmax
290  lwork = nmax*max( nmax, nrhs )
291 *
292 * Do for each value of M in MVAL.
293 *
294  DO 70 im = 1, nm
295  m = mval( im )
296 *
297 * Do for each value of N in NVAL.
298 *
299  DO 60 in = 1, nn
300  n = nval( in )
301  minmn = min( m, n )
302  DO 50 imat = 1, ntypes
303 *
304 * Do the tests only if DOTYPE( IMAT ) is true.
305 *
306  IF( .NOT.dotype( imat ) )
307  $ go to 50
308 *
309 * Set up parameters with SLATB4 and generate a test matrix
310 * with SLATMS.
311 *
312  CALL slatb4( path, imat, m, n, type, kl, ku, anorm, mode,
313  $ cndnum, dist )
314 *
315  srnamt = 'SLATMS'
316  CALL slatms( m, n, dist, iseed, type, rwork, mode,
317  $ cndnum, anorm, kl, ku, 'No packing', a, lda,
318  $ work, info )
319 *
320 * Check error code from SLATMS.
321 *
322  IF( info.NE.0 ) THEN
323  CALL alaerh( path, 'SLATMS', info, 0, ' ', m, n, -1,
324  $ -1, -1, imat, nfail, nerrs, nout )
325  go to 50
326  END IF
327 *
328 * Set some values for K: the first value must be MINMN,
329 * corresponding to the call of SQRT01; other values are
330 * used in the calls of SQRT02, and must not exceed MINMN.
331 *
332  kval( 1 ) = minmn
333  kval( 2 ) = 0
334  kval( 3 ) = 1
335  kval( 4 ) = minmn / 2
336  IF( minmn.EQ.0 ) THEN
337  nk = 1
338  ELSE IF( minmn.EQ.1 ) THEN
339  nk = 2
340  ELSE IF( minmn.LE.3 ) THEN
341  nk = 3
342  ELSE
343  nk = 4
344  END IF
345 *
346 * Do for each value of K in KVAL
347 *
348  DO 40 ik = 1, nk
349  k = kval( ik )
350 *
351 * Do for each pair of values (NB,NX) in NBVAL and NXVAL.
352 *
353  DO 30 inb = 1, nnb
354  nb = nbval( inb )
355  CALL xlaenv( 1, nb )
356  nx = nxval( inb )
357  CALL xlaenv( 3, nx )
358  DO i = 1, ntests
359  result( i ) = zero
360  END DO
361  nt = 2
362  IF( ik.EQ.1 ) THEN
363 *
364 * Test SGEQRF
365 *
366  CALL sqrt01( m, n, a, af, aq, ar, lda, tau,
367  $ work, lwork, rwork, result( 1 ) )
368 *
369 * Test SGEQRFP
370 *
371  CALL sqrt01p( m, n, a, af, aq, ar, lda, tau,
372  $ work, lwork, rwork, result( 8 ) )
373 
374  IF( .NOT. sgennd( m, n, af, lda ) )
375  $ result( 9 ) = 2*thresh
376  nt = nt + 1
377  ELSE IF( m.GE.n ) THEN
378 *
379 * Test SORGQR, using factorization
380 * returned by SQRT01
381 *
382  CALL sqrt02( m, n, k, a, af, aq, ar, lda, tau,
383  $ work, lwork, rwork, result( 1 ) )
384  END IF
385  IF( m.GE.k ) THEN
386 *
387 * Test SORMQR, using factorization returned
388 * by SQRT01
389 *
390  CALL sqrt03( m, n, k, af, ac, ar, aq, lda, tau,
391  $ work, lwork, rwork, result( 3 ) )
392  nt = nt + 4
393 *
394 * If M>=N and K=N, call SGEQRS to solve a system
395 * with NRHS right hand sides and compute the
396 * residual.
397 *
398  IF( k.EQ.n .AND. inb.EQ.1 ) THEN
399 *
400 * Generate a solution and set the right
401 * hand side.
402 *
403  srnamt = 'SLARHS'
404  CALL slarhs( path, 'New', 'Full',
405  $ 'No transpose', m, n, 0, 0,
406  $ nrhs, a, lda, xact, lda, b, lda,
407  $ iseed, info )
408 *
409  CALL slacpy( 'Full', m, nrhs, b, lda, x,
410  $ lda )
411  srnamt = 'SGEQRS'
412  CALL sgeqrs( m, n, nrhs, af, lda, tau, x,
413  $ lda, work, lwork, info )
414 *
415 * Check error code from SGEQRS.
416 *
417  IF( info.NE.0 )
418  $ CALL alaerh( path, 'SGEQRS', info, 0, ' ',
419  $ m, n, nrhs, -1, nb, imat,
420  $ nfail, nerrs, nout )
421 *
422  CALL sget02( 'No transpose', m, n, nrhs, a,
423  $ lda, x, lda, b, lda, rwork,
424  $ result( 7 ) )
425  nt = nt + 1
426  END IF
427  END IF
428 *
429 * Print information about the tests that did not
430 * pass the threshold.
431 *
432  DO 20 i = 1, ntests
433  IF( result( i ).GE.thresh ) THEN
434  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
435  $ CALL alahd( nout, path )
436  WRITE( nout, fmt = 9999 )m, n, k, nb, nx,
437  $ imat, i, result( i )
438  nfail = nfail + 1
439  END IF
440  20 continue
441  nrun = nrun + nt
442  30 continue
443  40 continue
444  50 continue
445  60 continue
446  70 continue
447 *
448 * Print a summary of the results.
449 *
450  CALL alasum( path, nout, nfail, nrun, nerrs )
451 *
452  9999 format( ' M=', i5, ', N=', i5, ', K=', i5, ', NB=', i4, ', NX=',
453  $ i5, ', type ', i2, ', test(', i2, ')=', g12.5 )
454  return
455 *
456 * End of SCHKQR
457 *
458  END