LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
ssptri.f
Go to the documentation of this file.
1 *> \brief \b SSPTRI
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download SSPTRI + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssptri.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssptri.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssptri.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE SSPTRI( UPLO, N, AP, IPIV, WORK, INFO )
22 *
23 * .. Scalar Arguments ..
24 * CHARACTER UPLO
25 * INTEGER INFO, N
26 * ..
27 * .. Array Arguments ..
28 * INTEGER IPIV( * )
29 * REAL AP( * ), WORK( * )
30 * ..
31 *
32 *
33 *> \par Purpose:
34 * =============
35 *>
36 *> \verbatim
37 *>
38 *> SSPTRI computes the inverse of a real symmetric indefinite matrix
39 *> A in packed storage using the factorization A = U*D*U**T or
40 *> A = L*D*L**T computed by SSPTRF.
41 *> \endverbatim
42 *
43 * Arguments:
44 * ==========
45 *
46 *> \param[in] UPLO
47 *> \verbatim
48 *> UPLO is CHARACTER*1
49 *> Specifies whether the details of the factorization are stored
50 *> as an upper or lower triangular matrix.
51 *> = 'U': Upper triangular, form is A = U*D*U**T;
52 *> = 'L': Lower triangular, form is A = L*D*L**T.
53 *> \endverbatim
54 *>
55 *> \param[in] N
56 *> \verbatim
57 *> N is INTEGER
58 *> The order of the matrix A. N >= 0.
59 *> \endverbatim
60 *>
61 *> \param[in,out] AP
62 *> \verbatim
63 *> AP is REAL array, dimension (N*(N+1)/2)
64 *> On entry, the block diagonal matrix D and the multipliers
65 *> used to obtain the factor U or L as computed by SSPTRF,
66 *> stored as a packed triangular matrix.
67 *>
68 *> On exit, if INFO = 0, the (symmetric) inverse of the original
69 *> matrix, stored as a packed triangular matrix. The j-th column
70 *> of inv(A) is stored in the array AP as follows:
71 *> if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
72 *> if UPLO = 'L',
73 *> AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.
74 *> \endverbatim
75 *>
76 *> \param[in] IPIV
77 *> \verbatim
78 *> IPIV is INTEGER array, dimension (N)
79 *> Details of the interchanges and the block structure of D
80 *> as determined by SSPTRF.
81 *> \endverbatim
82 *>
83 *> \param[out] WORK
84 *> \verbatim
85 *> WORK is REAL array, dimension (N)
86 *> \endverbatim
87 *>
88 *> \param[out] INFO
89 *> \verbatim
90 *> INFO is INTEGER
91 *> = 0: successful exit
92 *> < 0: if INFO = -i, the i-th argument had an illegal value
93 *> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
94 *> inverse could not be computed.
95 *> \endverbatim
96 *
97 * Authors:
98 * ========
99 *
100 *> \author Univ. of Tennessee
101 *> \author Univ. of California Berkeley
102 *> \author Univ. of Colorado Denver
103 *> \author NAG Ltd.
104 *
105 *> \date November 2011
106 *
107 *> \ingroup realOTHERcomputational
108 *
109 * =====================================================================
110  SUBROUTINE ssptri( UPLO, N, AP, IPIV, WORK, INFO )
111 *
112 * -- LAPACK computational routine (version 3.4.0) --
113 * -- LAPACK is a software package provided by Univ. of Tennessee, --
114 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
115 * November 2011
116 *
117 * .. Scalar Arguments ..
118  CHARACTER uplo
119  INTEGER info, n
120 * ..
121 * .. Array Arguments ..
122  INTEGER ipiv( * )
123  REAL ap( * ), work( * )
124 * ..
125 *
126 * =====================================================================
127 *
128 * .. Parameters ..
129  REAL one, zero
130  parameter( one = 1.0e+0, zero = 0.0e+0 )
131 * ..
132 * .. Local Scalars ..
133  LOGICAL upper
134  INTEGER j, k, kc, kcnext, kp, kpc, kstep, kx, npp
135  REAL ak, akkp1, akp1, d, t, temp
136 * ..
137 * .. External Functions ..
138  LOGICAL lsame
139  REAL sdot
140  EXTERNAL lsame, sdot
141 * ..
142 * .. External Subroutines ..
143  EXTERNAL scopy, sspmv, sswap, xerbla
144 * ..
145 * .. Intrinsic Functions ..
146  INTRINSIC abs
147 * ..
148 * .. Executable Statements ..
149 *
150 * Test the input parameters.
151 *
152  info = 0
153  upper = lsame( uplo, 'U' )
154  IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
155  info = -1
156  ELSE IF( n.LT.0 ) THEN
157  info = -2
158  END IF
159  IF( info.NE.0 ) THEN
160  CALL xerbla( 'SSPTRI', -info )
161  return
162  END IF
163 *
164 * Quick return if possible
165 *
166  IF( n.EQ.0 )
167  $ return
168 *
169 * Check that the diagonal matrix D is nonsingular.
170 *
171  IF( upper ) THEN
172 *
173 * Upper triangular storage: examine D from bottom to top
174 *
175  kp = n*( n+1 ) / 2
176  DO 10 info = n, 1, -1
177  IF( ipiv( info ).GT.0 .AND. ap( kp ).EQ.zero )
178  $ return
179  kp = kp - info
180  10 continue
181  ELSE
182 *
183 * Lower triangular storage: examine D from top to bottom.
184 *
185  kp = 1
186  DO 20 info = 1, n
187  IF( ipiv( info ).GT.0 .AND. ap( kp ).EQ.zero )
188  $ return
189  kp = kp + n - info + 1
190  20 continue
191  END IF
192  info = 0
193 *
194  IF( upper ) THEN
195 *
196 * Compute inv(A) from the factorization A = U*D*U**T.
197 *
198 * K is the main loop index, increasing from 1 to N in steps of
199 * 1 or 2, depending on the size of the diagonal blocks.
200 *
201  k = 1
202  kc = 1
203  30 continue
204 *
205 * If K > N, exit from loop.
206 *
207  IF( k.GT.n )
208  $ go to 50
209 *
210  kcnext = kc + k
211  IF( ipiv( k ).GT.0 ) THEN
212 *
213 * 1 x 1 diagonal block
214 *
215 * Invert the diagonal block.
216 *
217  ap( kc+k-1 ) = one / ap( kc+k-1 )
218 *
219 * Compute column K of the inverse.
220 *
221  IF( k.GT.1 ) THEN
222  CALL scopy( k-1, ap( kc ), 1, work, 1 )
223  CALL sspmv( uplo, k-1, -one, ap, work, 1, zero, ap( kc ),
224  $ 1 )
225  ap( kc+k-1 ) = ap( kc+k-1 ) -
226  $ sdot( k-1, work, 1, ap( kc ), 1 )
227  END IF
228  kstep = 1
229  ELSE
230 *
231 * 2 x 2 diagonal block
232 *
233 * Invert the diagonal block.
234 *
235  t = abs( ap( kcnext+k-1 ) )
236  ak = ap( kc+k-1 ) / t
237  akp1 = ap( kcnext+k ) / t
238  akkp1 = ap( kcnext+k-1 ) / t
239  d = t*( ak*akp1-one )
240  ap( kc+k-1 ) = akp1 / d
241  ap( kcnext+k ) = ak / d
242  ap( kcnext+k-1 ) = -akkp1 / d
243 *
244 * Compute columns K and K+1 of the inverse.
245 *
246  IF( k.GT.1 ) THEN
247  CALL scopy( k-1, ap( kc ), 1, work, 1 )
248  CALL sspmv( uplo, k-1, -one, ap, work, 1, zero, ap( kc ),
249  $ 1 )
250  ap( kc+k-1 ) = ap( kc+k-1 ) -
251  $ sdot( k-1, work, 1, ap( kc ), 1 )
252  ap( kcnext+k-1 ) = ap( kcnext+k-1 ) -
253  $ sdot( k-1, ap( kc ), 1, ap( kcnext ),
254  $ 1 )
255  CALL scopy( k-1, ap( kcnext ), 1, work, 1 )
256  CALL sspmv( uplo, k-1, -one, ap, work, 1, zero,
257  $ ap( kcnext ), 1 )
258  ap( kcnext+k ) = ap( kcnext+k ) -
259  $ sdot( k-1, work, 1, ap( kcnext ), 1 )
260  END IF
261  kstep = 2
262  kcnext = kcnext + k + 1
263  END IF
264 *
265  kp = abs( ipiv( k ) )
266  IF( kp.NE.k ) THEN
267 *
268 * Interchange rows and columns K and KP in the leading
269 * submatrix A(1:k+1,1:k+1)
270 *
271  kpc = ( kp-1 )*kp / 2 + 1
272  CALL sswap( kp-1, ap( kc ), 1, ap( kpc ), 1 )
273  kx = kpc + kp - 1
274  DO 40 j = kp + 1, k - 1
275  kx = kx + j - 1
276  temp = ap( kc+j-1 )
277  ap( kc+j-1 ) = ap( kx )
278  ap( kx ) = temp
279  40 continue
280  temp = ap( kc+k-1 )
281  ap( kc+k-1 ) = ap( kpc+kp-1 )
282  ap( kpc+kp-1 ) = temp
283  IF( kstep.EQ.2 ) THEN
284  temp = ap( kc+k+k-1 )
285  ap( kc+k+k-1 ) = ap( kc+k+kp-1 )
286  ap( kc+k+kp-1 ) = temp
287  END IF
288  END IF
289 *
290  k = k + kstep
291  kc = kcnext
292  go to 30
293  50 continue
294 *
295  ELSE
296 *
297 * Compute inv(A) from the factorization A = L*D*L**T.
298 *
299 * K is the main loop index, increasing from 1 to N in steps of
300 * 1 or 2, depending on the size of the diagonal blocks.
301 *
302  npp = n*( n+1 ) / 2
303  k = n
304  kc = npp
305  60 continue
306 *
307 * If K < 1, exit from loop.
308 *
309  IF( k.LT.1 )
310  $ go to 80
311 *
312  kcnext = kc - ( n-k+2 )
313  IF( ipiv( k ).GT.0 ) THEN
314 *
315 * 1 x 1 diagonal block
316 *
317 * Invert the diagonal block.
318 *
319  ap( kc ) = one / ap( kc )
320 *
321 * Compute column K of the inverse.
322 *
323  IF( k.LT.n ) THEN
324  CALL scopy( n-k, ap( kc+1 ), 1, work, 1 )
325  CALL sspmv( uplo, n-k, -one, ap( kc+n-k+1 ), work, 1,
326  $ zero, ap( kc+1 ), 1 )
327  ap( kc ) = ap( kc ) - sdot( n-k, work, 1, ap( kc+1 ), 1 )
328  END IF
329  kstep = 1
330  ELSE
331 *
332 * 2 x 2 diagonal block
333 *
334 * Invert the diagonal block.
335 *
336  t = abs( ap( kcnext+1 ) )
337  ak = ap( kcnext ) / t
338  akp1 = ap( kc ) / t
339  akkp1 = ap( kcnext+1 ) / t
340  d = t*( ak*akp1-one )
341  ap( kcnext ) = akp1 / d
342  ap( kc ) = ak / d
343  ap( kcnext+1 ) = -akkp1 / d
344 *
345 * Compute columns K-1 and K of the inverse.
346 *
347  IF( k.LT.n ) THEN
348  CALL scopy( n-k, ap( kc+1 ), 1, work, 1 )
349  CALL sspmv( uplo, n-k, -one, ap( kc+( n-k+1 ) ), work, 1,
350  $ zero, ap( kc+1 ), 1 )
351  ap( kc ) = ap( kc ) - sdot( n-k, work, 1, ap( kc+1 ), 1 )
352  ap( kcnext+1 ) = ap( kcnext+1 ) -
353  $ sdot( n-k, ap( kc+1 ), 1,
354  $ ap( kcnext+2 ), 1 )
355  CALL scopy( n-k, ap( kcnext+2 ), 1, work, 1 )
356  CALL sspmv( uplo, n-k, -one, ap( kc+( n-k+1 ) ), work, 1,
357  $ zero, ap( kcnext+2 ), 1 )
358  ap( kcnext ) = ap( kcnext ) -
359  $ sdot( n-k, work, 1, ap( kcnext+2 ), 1 )
360  END IF
361  kstep = 2
362  kcnext = kcnext - ( n-k+3 )
363  END IF
364 *
365  kp = abs( ipiv( k ) )
366  IF( kp.NE.k ) THEN
367 *
368 * Interchange rows and columns K and KP in the trailing
369 * submatrix A(k-1:n,k-1:n)
370 *
371  kpc = npp - ( n-kp+1 )*( n-kp+2 ) / 2 + 1
372  IF( kp.LT.n )
373  $ CALL sswap( n-kp, ap( kc+kp-k+1 ), 1, ap( kpc+1 ), 1 )
374  kx = kc + kp - k
375  DO 70 j = k + 1, kp - 1
376  kx = kx + n - j + 1
377  temp = ap( kc+j-k )
378  ap( kc+j-k ) = ap( kx )
379  ap( kx ) = temp
380  70 continue
381  temp = ap( kc )
382  ap( kc ) = ap( kpc )
383  ap( kpc ) = temp
384  IF( kstep.EQ.2 ) THEN
385  temp = ap( kc-n+k-1 )
386  ap( kc-n+k-1 ) = ap( kc-n+kp-1 )
387  ap( kc-n+kp-1 ) = temp
388  END IF
389  END IF
390 *
391  k = k - kstep
392  kc = kcnext
393  go to 60
394  80 continue
395  END IF
396 *
397  return
398 *
399 * End of SSPTRI
400 *
401  END