LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
zunmtr.f
Go to the documentation of this file.
1 *> \brief \b ZUNMTR
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download ZUNMTR + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunmtr.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunmtr.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunmtr.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE ZUNMTR( SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC,
22 * WORK, LWORK, INFO )
23 *
24 * .. Scalar Arguments ..
25 * CHARACTER SIDE, TRANS, UPLO
26 * INTEGER INFO, LDA, LDC, LWORK, M, N
27 * ..
28 * .. Array Arguments ..
29 * COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
30 * ..
31 *
32 *
33 *> \par Purpose:
34 * =============
35 *>
36 *> \verbatim
37 *>
38 *> ZUNMTR overwrites the general complex M-by-N matrix C with
39 *>
40 *> SIDE = 'L' SIDE = 'R'
41 *> TRANS = 'N': Q * C C * Q
42 *> TRANS = 'C': Q**H * C C * Q**H
43 *>
44 *> where Q is a complex unitary matrix of order nq, with nq = m if
45 *> SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
46 *> nq-1 elementary reflectors, as returned by ZHETRD:
47 *>
48 *> if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
49 *>
50 *> if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
51 *> \endverbatim
52 *
53 * Arguments:
54 * ==========
55 *
56 *> \param[in] SIDE
57 *> \verbatim
58 *> SIDE is CHARACTER*1
59 *> = 'L': apply Q or Q**H from the Left;
60 *> = 'R': apply Q or Q**H from the Right.
61 *> \endverbatim
62 *>
63 *> \param[in] UPLO
64 *> \verbatim
65 *> UPLO is CHARACTER*1
66 *> = 'U': Upper triangle of A contains elementary reflectors
67 *> from ZHETRD;
68 *> = 'L': Lower triangle of A contains elementary reflectors
69 *> from ZHETRD.
70 *> \endverbatim
71 *>
72 *> \param[in] TRANS
73 *> \verbatim
74 *> TRANS is CHARACTER*1
75 *> = 'N': No transpose, apply Q;
76 *> = 'C': Conjugate transpose, apply Q**H.
77 *> \endverbatim
78 *>
79 *> \param[in] M
80 *> \verbatim
81 *> M is INTEGER
82 *> The number of rows of the matrix C. M >= 0.
83 *> \endverbatim
84 *>
85 *> \param[in] N
86 *> \verbatim
87 *> N is INTEGER
88 *> The number of columns of the matrix C. N >= 0.
89 *> \endverbatim
90 *>
91 *> \param[in] A
92 *> \verbatim
93 *> A is COMPLEX*16 array, dimension
94 *> (LDA,M) if SIDE = 'L'
95 *> (LDA,N) if SIDE = 'R'
96 *> The vectors which define the elementary reflectors, as
97 *> returned by ZHETRD.
98 *> \endverbatim
99 *>
100 *> \param[in] LDA
101 *> \verbatim
102 *> LDA is INTEGER
103 *> The leading dimension of the array A.
104 *> LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
105 *> \endverbatim
106 *>
107 *> \param[in] TAU
108 *> \verbatim
109 *> TAU is COMPLEX*16 array, dimension
110 *> (M-1) if SIDE = 'L'
111 *> (N-1) if SIDE = 'R'
112 *> TAU(i) must contain the scalar factor of the elementary
113 *> reflector H(i), as returned by ZHETRD.
114 *> \endverbatim
115 *>
116 *> \param[in,out] C
117 *> \verbatim
118 *> C is COMPLEX*16 array, dimension (LDC,N)
119 *> On entry, the M-by-N matrix C.
120 *> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
121 *> \endverbatim
122 *>
123 *> \param[in] LDC
124 *> \verbatim
125 *> LDC is INTEGER
126 *> The leading dimension of the array C. LDC >= max(1,M).
127 *> \endverbatim
128 *>
129 *> \param[out] WORK
130 *> \verbatim
131 *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
132 *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
133 *> \endverbatim
134 *>
135 *> \param[in] LWORK
136 *> \verbatim
137 *> LWORK is INTEGER
138 *> The dimension of the array WORK.
139 *> If SIDE = 'L', LWORK >= max(1,N);
140 *> if SIDE = 'R', LWORK >= max(1,M).
141 *> For optimum performance LWORK >= N*NB if SIDE = 'L', and
142 *> LWORK >=M*NB if SIDE = 'R', where NB is the optimal
143 *> blocksize.
144 *>
145 *> If LWORK = -1, then a workspace query is assumed; the routine
146 *> only calculates the optimal size of the WORK array, returns
147 *> this value as the first entry of the WORK array, and no error
148 *> message related to LWORK is issued by XERBLA.
149 *> \endverbatim
150 *>
151 *> \param[out] INFO
152 *> \verbatim
153 *> INFO is INTEGER
154 *> = 0: successful exit
155 *> < 0: if INFO = -i, the i-th argument had an illegal value
156 *> \endverbatim
157 *
158 * Authors:
159 * ========
160 *
161 *> \author Univ. of Tennessee
162 *> \author Univ. of California Berkeley
163 *> \author Univ. of Colorado Denver
164 *> \author NAG Ltd.
165 *
166 *> \date November 2011
167 *
168 *> \ingroup complex16OTHERcomputational
169 *
170 * =====================================================================
171  SUBROUTINE zunmtr( SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC,
172  $ work, lwork, info )
173 *
174 * -- LAPACK computational routine (version 3.4.0) --
175 * -- LAPACK is a software package provided by Univ. of Tennessee, --
176 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
177 * November 2011
178 *
179 * .. Scalar Arguments ..
180  CHARACTER side, trans, uplo
181  INTEGER info, lda, ldc, lwork, m, n
182 * ..
183 * .. Array Arguments ..
184  COMPLEX*16 a( lda, * ), c( ldc, * ), tau( * ), work( * )
185 * ..
186 *
187 * =====================================================================
188 *
189 * .. Local Scalars ..
190  LOGICAL left, lquery, upper
191  INTEGER i1, i2, iinfo, lwkopt, mi, nb, ni, nq, nw
192 * ..
193 * .. External Functions ..
194  LOGICAL lsame
195  INTEGER ilaenv
196  EXTERNAL lsame, ilaenv
197 * ..
198 * .. External Subroutines ..
199  EXTERNAL xerbla, zunmql, zunmqr
200 * ..
201 * .. Intrinsic Functions ..
202  INTRINSIC max
203 * ..
204 * .. Executable Statements ..
205 *
206 * Test the input arguments
207 *
208  info = 0
209  left = lsame( side, 'L' )
210  upper = lsame( uplo, 'U' )
211  lquery = ( lwork.EQ.-1 )
212 *
213 * NQ is the order of Q and NW is the minimum dimension of WORK
214 *
215  IF( left ) THEN
216  nq = m
217  nw = n
218  ELSE
219  nq = n
220  nw = m
221  END IF
222  IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
223  info = -1
224  ELSE IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
225  info = -2
226  ELSE IF( .NOT.lsame( trans, 'N' ) .AND. .NOT.lsame( trans, 'C' ) )
227  $ THEN
228  info = -3
229  ELSE IF( m.LT.0 ) THEN
230  info = -4
231  ELSE IF( n.LT.0 ) THEN
232  info = -5
233  ELSE IF( lda.LT.max( 1, nq ) ) THEN
234  info = -7
235  ELSE IF( ldc.LT.max( 1, m ) ) THEN
236  info = -10
237  ELSE IF( lwork.LT.max( 1, nw ) .AND. .NOT.lquery ) THEN
238  info = -12
239  END IF
240 *
241  IF( info.EQ.0 ) THEN
242  IF( upper ) THEN
243  IF( left ) THEN
244  nb = ilaenv( 1, 'ZUNMQL', side // trans, m-1, n, m-1,
245  $ -1 )
246  ELSE
247  nb = ilaenv( 1, 'ZUNMQL', side // trans, m, n-1, n-1,
248  $ -1 )
249  END IF
250  ELSE
251  IF( left ) THEN
252  nb = ilaenv( 1, 'ZUNMQR', side // trans, m-1, n, m-1,
253  $ -1 )
254  ELSE
255  nb = ilaenv( 1, 'ZUNMQR', side // trans, m, n-1, n-1,
256  $ -1 )
257  END IF
258  END IF
259  lwkopt = max( 1, nw )*nb
260  work( 1 ) = lwkopt
261  END IF
262 *
263  IF( info.NE.0 ) THEN
264  CALL xerbla( 'ZUNMTR', -info )
265  return
266  ELSE IF( lquery ) THEN
267  return
268  END IF
269 *
270 * Quick return if possible
271 *
272  IF( m.EQ.0 .OR. n.EQ.0 .OR. nq.EQ.1 ) THEN
273  work( 1 ) = 1
274  return
275  END IF
276 *
277  IF( left ) THEN
278  mi = m - 1
279  ni = n
280  ELSE
281  mi = m
282  ni = n - 1
283  END IF
284 *
285  IF( upper ) THEN
286 *
287 * Q was determined by a call to ZHETRD with UPLO = 'U'
288 *
289  CALL zunmql( side, trans, mi, ni, nq-1, a( 1, 2 ), lda, tau, c,
290  $ ldc, work, lwork, iinfo )
291  ELSE
292 *
293 * Q was determined by a call to ZHETRD with UPLO = 'L'
294 *
295  IF( left ) THEN
296  i1 = 2
297  i2 = 1
298  ELSE
299  i1 = 1
300  i2 = 2
301  END IF
302  CALL zunmqr( side, trans, mi, ni, nq-1, a( 2, 1 ), lda, tau,
303  $ c( i1, i2 ), ldc, work, lwork, iinfo )
304  END IF
305  work( 1 ) = lwkopt
306  return
307 *
308 * End of ZUNMTR
309 *
310  END