LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
ssptrd.f
Go to the documentation of this file.
1 *> \brief \b SSPTRD
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download SSPTRD + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssptrd.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssptrd.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssptrd.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE SSPTRD( UPLO, N, AP, D, E, TAU, INFO )
22 *
23 * .. Scalar Arguments ..
24 * CHARACTER UPLO
25 * INTEGER INFO, N
26 * ..
27 * .. Array Arguments ..
28 * REAL AP( * ), D( * ), E( * ), TAU( * )
29 * ..
30 *
31 *
32 *> \par Purpose:
33 * =============
34 *>
35 *> \verbatim
36 *>
37 *> SSPTRD reduces a real symmetric matrix A stored in packed form to
38 *> symmetric tridiagonal form T by an orthogonal similarity
39 *> transformation: Q**T * A * Q = T.
40 *> \endverbatim
41 *
42 * Arguments:
43 * ==========
44 *
45 *> \param[in] UPLO
46 *> \verbatim
47 *> UPLO is CHARACTER*1
48 *> = 'U': Upper triangle of A is stored;
49 *> = 'L': Lower triangle of A is stored.
50 *> \endverbatim
51 *>
52 *> \param[in] N
53 *> \verbatim
54 *> N is INTEGER
55 *> The order of the matrix A. N >= 0.
56 *> \endverbatim
57 *>
58 *> \param[in,out] AP
59 *> \verbatim
60 *> AP is REAL array, dimension (N*(N+1)/2)
61 *> On entry, the upper or lower triangle of the symmetric matrix
62 *> A, packed columnwise in a linear array. The j-th column of A
63 *> is stored in the array AP as follows:
64 *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
65 *> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
66 *> On exit, if UPLO = 'U', the diagonal and first superdiagonal
67 *> of A are overwritten by the corresponding elements of the
68 *> tridiagonal matrix T, and the elements above the first
69 *> superdiagonal, with the array TAU, represent the orthogonal
70 *> matrix Q as a product of elementary reflectors; if UPLO
71 *> = 'L', the diagonal and first subdiagonal of A are over-
72 *> written by the corresponding elements of the tridiagonal
73 *> matrix T, and the elements below the first subdiagonal, with
74 *> the array TAU, represent the orthogonal matrix Q as a product
75 *> of elementary reflectors. See Further Details.
76 *> \endverbatim
77 *>
78 *> \param[out] D
79 *> \verbatim
80 *> D is REAL array, dimension (N)
81 *> The diagonal elements of the tridiagonal matrix T:
82 *> D(i) = A(i,i).
83 *> \endverbatim
84 *>
85 *> \param[out] E
86 *> \verbatim
87 *> E is REAL array, dimension (N-1)
88 *> The off-diagonal elements of the tridiagonal matrix T:
89 *> E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
90 *> \endverbatim
91 *>
92 *> \param[out] TAU
93 *> \verbatim
94 *> TAU is REAL array, dimension (N-1)
95 *> The scalar factors of the elementary reflectors (see Further
96 *> Details).
97 *> \endverbatim
98 *>
99 *> \param[out] INFO
100 *> \verbatim
101 *> INFO is INTEGER
102 *> = 0: successful exit
103 *> < 0: if INFO = -i, the i-th argument had an illegal value
104 *> \endverbatim
105 *
106 * Authors:
107 * ========
108 *
109 *> \author Univ. of Tennessee
110 *> \author Univ. of California Berkeley
111 *> \author Univ. of Colorado Denver
112 *> \author NAG Ltd.
113 *
114 *> \date November 2011
115 *
116 *> \ingroup realOTHERcomputational
117 *
118 *> \par Further Details:
119 * =====================
120 *>
121 *> \verbatim
122 *>
123 *> If UPLO = 'U', the matrix Q is represented as a product of elementary
124 *> reflectors
125 *>
126 *> Q = H(n-1) . . . H(2) H(1).
127 *>
128 *> Each H(i) has the form
129 *>
130 *> H(i) = I - tau * v * v**T
131 *>
132 *> where tau is a real scalar, and v is a real vector with
133 *> v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
134 *> overwriting A(1:i-1,i+1), and tau is stored in TAU(i).
135 *>
136 *> If UPLO = 'L', the matrix Q is represented as a product of elementary
137 *> reflectors
138 *>
139 *> Q = H(1) H(2) . . . H(n-1).
140 *>
141 *> Each H(i) has the form
142 *>
143 *> H(i) = I - tau * v * v**T
144 *>
145 *> where tau is a real scalar, and v is a real vector with
146 *> v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
147 *> overwriting A(i+2:n,i), and tau is stored in TAU(i).
148 *> \endverbatim
149 *>
150 * =====================================================================
151  SUBROUTINE ssptrd( UPLO, N, AP, D, E, TAU, INFO )
152 *
153 * -- LAPACK computational routine (version 3.4.0) --
154 * -- LAPACK is a software package provided by Univ. of Tennessee, --
155 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
156 * November 2011
157 *
158 * .. Scalar Arguments ..
159  CHARACTER uplo
160  INTEGER info, n
161 * ..
162 * .. Array Arguments ..
163  REAL ap( * ), d( * ), e( * ), tau( * )
164 * ..
165 *
166 * =====================================================================
167 *
168 * .. Parameters ..
169  REAL one, zero, half
170  parameter( one = 1.0, zero = 0.0, half = 1.0 / 2.0 )
171 * ..
172 * .. Local Scalars ..
173  LOGICAL upper
174  INTEGER i, i1, i1i1, ii
175  REAL alpha, taui
176 * ..
177 * .. External Subroutines ..
178  EXTERNAL saxpy, slarfg, sspmv, sspr2, xerbla
179 * ..
180 * .. External Functions ..
181  LOGICAL lsame
182  REAL sdot
183  EXTERNAL lsame, sdot
184 * ..
185 * .. Executable Statements ..
186 *
187 * Test the input parameters
188 *
189  info = 0
190  upper = lsame( uplo, 'U' )
191  IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
192  info = -1
193  ELSE IF( n.LT.0 ) THEN
194  info = -2
195  END IF
196  IF( info.NE.0 ) THEN
197  CALL xerbla( 'SSPTRD', -info )
198  return
199  END IF
200 *
201 * Quick return if possible
202 *
203  IF( n.LE.0 )
204  $ return
205 *
206  IF( upper ) THEN
207 *
208 * Reduce the upper triangle of A.
209 * I1 is the index in AP of A(1,I+1).
210 *
211  i1 = n*( n-1 ) / 2 + 1
212  DO 10 i = n - 1, 1, -1
213 *
214 * Generate elementary reflector H(i) = I - tau * v * v**T
215 * to annihilate A(1:i-1,i+1)
216 *
217  CALL slarfg( i, ap( i1+i-1 ), ap( i1 ), 1, taui )
218  e( i ) = ap( i1+i-1 )
219 *
220  IF( taui.NE.zero ) THEN
221 *
222 * Apply H(i) from both sides to A(1:i,1:i)
223 *
224  ap( i1+i-1 ) = one
225 *
226 * Compute y := tau * A * v storing y in TAU(1:i)
227 *
228  CALL sspmv( uplo, i, taui, ap, ap( i1 ), 1, zero, tau,
229  $ 1 )
230 *
231 * Compute w := y - 1/2 * tau * (y**T *v) * v
232 *
233  alpha = -half*taui*sdot( i, tau, 1, ap( i1 ), 1 )
234  CALL saxpy( i, alpha, ap( i1 ), 1, tau, 1 )
235 *
236 * Apply the transformation as a rank-2 update:
237 * A := A - v * w**T - w * v**T
238 *
239  CALL sspr2( uplo, i, -one, ap( i1 ), 1, tau, 1, ap )
240 *
241  ap( i1+i-1 ) = e( i )
242  END IF
243  d( i+1 ) = ap( i1+i )
244  tau( i ) = taui
245  i1 = i1 - i
246  10 continue
247  d( 1 ) = ap( 1 )
248  ELSE
249 *
250 * Reduce the lower triangle of A. II is the index in AP of
251 * A(i,i) and I1I1 is the index of A(i+1,i+1).
252 *
253  ii = 1
254  DO 20 i = 1, n - 1
255  i1i1 = ii + n - i + 1
256 *
257 * Generate elementary reflector H(i) = I - tau * v * v**T
258 * to annihilate A(i+2:n,i)
259 *
260  CALL slarfg( n-i, ap( ii+1 ), ap( ii+2 ), 1, taui )
261  e( i ) = ap( ii+1 )
262 *
263  IF( taui.NE.zero ) THEN
264 *
265 * Apply H(i) from both sides to A(i+1:n,i+1:n)
266 *
267  ap( ii+1 ) = one
268 *
269 * Compute y := tau * A * v storing y in TAU(i:n-1)
270 *
271  CALL sspmv( uplo, n-i, taui, ap( i1i1 ), ap( ii+1 ), 1,
272  $ zero, tau( i ), 1 )
273 *
274 * Compute w := y - 1/2 * tau * (y**T *v) * v
275 *
276  alpha = -half*taui*sdot( n-i, tau( i ), 1, ap( ii+1 ),
277  $ 1 )
278  CALL saxpy( n-i, alpha, ap( ii+1 ), 1, tau( i ), 1 )
279 *
280 * Apply the transformation as a rank-2 update:
281 * A := A - v * w**T - w * v**T
282 *
283  CALL sspr2( uplo, n-i, -one, ap( ii+1 ), 1, tau( i ), 1,
284  $ ap( i1i1 ) )
285 *
286  ap( ii+1 ) = e( i )
287  END IF
288  d( i ) = ap( ii )
289  tau( i ) = taui
290  ii = i1i1
291  20 continue
292  d( n ) = ap( ii )
293  END IF
294 *
295  return
296 *
297 * End of SSPTRD
298 *
299  END