LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE ZLQT01( M, N, A, AF, Q, L, LDA, TAU, WORK, LWORK, 00002 $ RWORK, RESULT ) 00003 * 00004 * -- LAPACK test routine (version 3.1) -- 00005 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 00006 * November 2006 00007 * 00008 * .. Scalar Arguments .. 00009 INTEGER LDA, LWORK, M, N 00010 * .. 00011 * .. Array Arguments .. 00012 DOUBLE PRECISION RESULT( * ), RWORK( * ) 00013 COMPLEX*16 A( LDA, * ), AF( LDA, * ), L( LDA, * ), 00014 $ Q( LDA, * ), TAU( * ), WORK( LWORK ) 00015 * .. 00016 * 00017 * Purpose 00018 * ======= 00019 * 00020 * ZLQT01 tests ZGELQF, which computes the LQ factorization of an m-by-n 00021 * matrix A, and partially tests ZUNGLQ which forms the n-by-n 00022 * orthogonal matrix Q. 00023 * 00024 * ZLQT01 compares L with A*Q', and checks that Q is orthogonal. 00025 * 00026 * Arguments 00027 * ========= 00028 * 00029 * M (input) INTEGER 00030 * The number of rows of the matrix A. M >= 0. 00031 * 00032 * N (input) INTEGER 00033 * The number of columns of the matrix A. N >= 0. 00034 * 00035 * A (input) COMPLEX*16 array, dimension (LDA,N) 00036 * The m-by-n matrix A. 00037 * 00038 * AF (output) COMPLEX*16 array, dimension (LDA,N) 00039 * Details of the LQ factorization of A, as returned by ZGELQF. 00040 * See ZGELQF for further details. 00041 * 00042 * Q (output) COMPLEX*16 array, dimension (LDA,N) 00043 * The n-by-n orthogonal matrix Q. 00044 * 00045 * L (workspace) COMPLEX*16 array, dimension (LDA,max(M,N)) 00046 * 00047 * LDA (input) INTEGER 00048 * The leading dimension of the arrays A, AF, Q and L. 00049 * LDA >= max(M,N). 00050 * 00051 * TAU (output) COMPLEX*16 array, dimension (min(M,N)) 00052 * The scalar factors of the elementary reflectors, as returned 00053 * by ZGELQF. 00054 * 00055 * WORK (workspace) COMPLEX*16 array, dimension (LWORK) 00056 * 00057 * LWORK (input) INTEGER 00058 * The dimension of the array WORK. 00059 * 00060 * RWORK (workspace) DOUBLE PRECISION array, dimension (max(M,N)) 00061 * 00062 * RESULT (output) DOUBLE PRECISION array, dimension (2) 00063 * The test ratios: 00064 * RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS ) 00065 * RESULT(2) = norm( I - Q*Q' ) / ( N * EPS ) 00066 * 00067 * ===================================================================== 00068 * 00069 * .. Parameters .. 00070 DOUBLE PRECISION ZERO, ONE 00071 PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) 00072 COMPLEX*16 ROGUE 00073 PARAMETER ( ROGUE = ( -1.0D+10, -1.0D+10 ) ) 00074 * .. 00075 * .. Local Scalars .. 00076 INTEGER INFO, MINMN 00077 DOUBLE PRECISION ANORM, EPS, RESID 00078 * .. 00079 * .. External Functions .. 00080 DOUBLE PRECISION DLAMCH, ZLANGE, ZLANSY 00081 EXTERNAL DLAMCH, ZLANGE, ZLANSY 00082 * .. 00083 * .. External Subroutines .. 00084 EXTERNAL ZGELQF, ZGEMM, ZHERK, ZLACPY, ZLASET, ZUNGLQ 00085 * .. 00086 * .. Intrinsic Functions .. 00087 INTRINSIC DBLE, DCMPLX, MAX, MIN 00088 * .. 00089 * .. Scalars in Common .. 00090 CHARACTER*32 SRNAMT 00091 * .. 00092 * .. Common blocks .. 00093 COMMON / SRNAMC / SRNAMT 00094 * .. 00095 * .. Executable Statements .. 00096 * 00097 MINMN = MIN( M, N ) 00098 EPS = DLAMCH( 'Epsilon' ) 00099 * 00100 * Copy the matrix A to the array AF. 00101 * 00102 CALL ZLACPY( 'Full', M, N, A, LDA, AF, LDA ) 00103 * 00104 * Factorize the matrix A in the array AF. 00105 * 00106 SRNAMT = 'ZGELQF' 00107 CALL ZGELQF( M, N, AF, LDA, TAU, WORK, LWORK, INFO ) 00108 * 00109 * Copy details of Q 00110 * 00111 CALL ZLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA ) 00112 IF( N.GT.1 ) 00113 $ CALL ZLACPY( 'Upper', M, N-1, AF( 1, 2 ), LDA, Q( 1, 2 ), LDA ) 00114 * 00115 * Generate the n-by-n matrix Q 00116 * 00117 SRNAMT = 'ZUNGLQ' 00118 CALL ZUNGLQ( N, N, MINMN, Q, LDA, TAU, WORK, LWORK, INFO ) 00119 * 00120 * Copy L 00121 * 00122 CALL ZLASET( 'Full', M, N, DCMPLX( ZERO ), DCMPLX( ZERO ), L, 00123 $ LDA ) 00124 CALL ZLACPY( 'Lower', M, N, AF, LDA, L, LDA ) 00125 * 00126 * Compute L - A*Q' 00127 * 00128 CALL ZGEMM( 'No transpose', 'Conjugate transpose', M, N, N, 00129 $ DCMPLX( -ONE ), A, LDA, Q, LDA, DCMPLX( ONE ), L, 00130 $ LDA ) 00131 * 00132 * Compute norm( L - Q'*A ) / ( N * norm(A) * EPS ) . 00133 * 00134 ANORM = ZLANGE( '1', M, N, A, LDA, RWORK ) 00135 RESID = ZLANGE( '1', M, N, L, LDA, RWORK ) 00136 IF( ANORM.GT.ZERO ) THEN 00137 RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, N ) ) ) / ANORM ) / EPS 00138 ELSE 00139 RESULT( 1 ) = ZERO 00140 END IF 00141 * 00142 * Compute I - Q*Q' 00143 * 00144 CALL ZLASET( 'Full', N, N, DCMPLX( ZERO ), DCMPLX( ONE ), L, LDA ) 00145 CALL ZHERK( 'Upper', 'No transpose', N, N, -ONE, Q, LDA, ONE, L, 00146 $ LDA ) 00147 * 00148 * Compute norm( I - Q*Q' ) / ( N * EPS ) . 00149 * 00150 RESID = ZLANSY( '1', 'Upper', N, L, LDA, RWORK ) 00151 * 00152 RESULT( 2 ) = ( RESID / DBLE( MAX( 1, N ) ) ) / EPS 00153 * 00154 RETURN 00155 * 00156 * End of ZLQT01 00157 * 00158 END