LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE ZUNGL2( M, N, K, A, LDA, TAU, WORK, INFO ) 00002 * 00003 * -- LAPACK routine (version 3.3.1) -- 00004 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00005 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00006 * -- April 2011 -- 00007 * 00008 * .. Scalar Arguments .. 00009 INTEGER INFO, K, LDA, M, N 00010 * .. 00011 * .. Array Arguments .. 00012 COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * ) 00013 * .. 00014 * 00015 * Purpose 00016 * ======= 00017 * 00018 * ZUNGL2 generates an m-by-n complex matrix Q with orthonormal rows, 00019 * which is defined as the first m rows of a product of k elementary 00020 * reflectors of order n 00021 * 00022 * Q = H(k)**H . . . H(2)**H H(1)**H 00023 * 00024 * as returned by ZGELQF. 00025 * 00026 * Arguments 00027 * ========= 00028 * 00029 * M (input) INTEGER 00030 * The number of rows of the matrix Q. M >= 0. 00031 * 00032 * N (input) INTEGER 00033 * The number of columns of the matrix Q. N >= M. 00034 * 00035 * K (input) INTEGER 00036 * The number of elementary reflectors whose product defines the 00037 * matrix Q. M >= K >= 0. 00038 * 00039 * A (input/output) COMPLEX*16 array, dimension (LDA,N) 00040 * On entry, the i-th row must contain the vector which defines 00041 * the elementary reflector H(i), for i = 1,2,...,k, as returned 00042 * by ZGELQF in the first k rows of its array argument A. 00043 * On exit, the m by n matrix Q. 00044 * 00045 * LDA (input) INTEGER 00046 * The first dimension of the array A. LDA >= max(1,M). 00047 * 00048 * TAU (input) COMPLEX*16 array, dimension (K) 00049 * TAU(i) must contain the scalar factor of the elementary 00050 * reflector H(i), as returned by ZGELQF. 00051 * 00052 * WORK (workspace) COMPLEX*16 array, dimension (M) 00053 * 00054 * INFO (output) INTEGER 00055 * = 0: successful exit 00056 * < 0: if INFO = -i, the i-th argument has an illegal value 00057 * 00058 * ===================================================================== 00059 * 00060 * .. Parameters .. 00061 COMPLEX*16 ONE, ZERO 00062 PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ), 00063 $ ZERO = ( 0.0D+0, 0.0D+0 ) ) 00064 * .. 00065 * .. Local Scalars .. 00066 INTEGER I, J, L 00067 * .. 00068 * .. External Subroutines .. 00069 EXTERNAL XERBLA, ZLACGV, ZLARF, ZSCAL 00070 * .. 00071 * .. Intrinsic Functions .. 00072 INTRINSIC DCONJG, MAX 00073 * .. 00074 * .. Executable Statements .. 00075 * 00076 * Test the input arguments 00077 * 00078 INFO = 0 00079 IF( M.LT.0 ) THEN 00080 INFO = -1 00081 ELSE IF( N.LT.M ) THEN 00082 INFO = -2 00083 ELSE IF( K.LT.0 .OR. K.GT.M ) THEN 00084 INFO = -3 00085 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN 00086 INFO = -5 00087 END IF 00088 IF( INFO.NE.0 ) THEN 00089 CALL XERBLA( 'ZUNGL2', -INFO ) 00090 RETURN 00091 END IF 00092 * 00093 * Quick return if possible 00094 * 00095 IF( M.LE.0 ) 00096 $ RETURN 00097 * 00098 IF( K.LT.M ) THEN 00099 * 00100 * Initialise rows k+1:m to rows of the unit matrix 00101 * 00102 DO 20 J = 1, N 00103 DO 10 L = K + 1, M 00104 A( L, J ) = ZERO 00105 10 CONTINUE 00106 IF( J.GT.K .AND. J.LE.M ) 00107 $ A( J, J ) = ONE 00108 20 CONTINUE 00109 END IF 00110 * 00111 DO 40 I = K, 1, -1 00112 * 00113 * Apply H(i)**H to A(i:m,i:n) from the right 00114 * 00115 IF( I.LT.N ) THEN 00116 CALL ZLACGV( N-I, A( I, I+1 ), LDA ) 00117 IF( I.LT.M ) THEN 00118 A( I, I ) = ONE 00119 CALL ZLARF( 'Right', M-I, N-I+1, A( I, I ), LDA, 00120 $ DCONJG( TAU( I ) ), A( I+1, I ), LDA, WORK ) 00121 END IF 00122 CALL ZSCAL( N-I, -TAU( I ), A( I, I+1 ), LDA ) 00123 CALL ZLACGV( N-I, A( I, I+1 ), LDA ) 00124 END IF 00125 A( I, I ) = ONE - DCONJG( TAU( I ) ) 00126 * 00127 * Set A(i,1:i-1) to zero 00128 * 00129 DO 30 L = 1, I - 1 00130 A( I, L ) = ZERO 00131 30 CONTINUE 00132 40 CONTINUE 00133 RETURN 00134 * 00135 * End of ZUNGL2 00136 * 00137 END