LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE CLAESY( A, B, C, RT1, RT2, EVSCAL, CS1, SN1 ) 00002 * 00003 * -- LAPACK auxiliary routine (version 3.2) -- 00004 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00005 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00006 * November 2006 00007 * 00008 * .. Scalar Arguments .. 00009 COMPLEX A, B, C, CS1, EVSCAL, RT1, RT2, SN1 00010 * .. 00011 * 00012 * Purpose 00013 * ======= 00014 * 00015 * CLAESY computes the eigendecomposition of a 2-by-2 symmetric matrix 00016 * ( ( A, B );( B, C ) ) 00017 * provided the norm of the matrix of eigenvectors is larger than 00018 * some threshold value. 00019 * 00020 * RT1 is the eigenvalue of larger absolute value, and RT2 of 00021 * smaller absolute value. If the eigenvectors are computed, then 00022 * on return ( CS1, SN1 ) is the unit eigenvector for RT1, hence 00023 * 00024 * [ CS1 SN1 ] . [ A B ] . [ CS1 -SN1 ] = [ RT1 0 ] 00025 * [ -SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ] 00026 * 00027 * Arguments 00028 * ========= 00029 * 00030 * A (input) COMPLEX 00031 * The ( 1, 1 ) element of input matrix. 00032 * 00033 * B (input) COMPLEX 00034 * The ( 1, 2 ) element of input matrix. The ( 2, 1 ) element 00035 * is also given by B, since the 2-by-2 matrix is symmetric. 00036 * 00037 * C (input) COMPLEX 00038 * The ( 2, 2 ) element of input matrix. 00039 * 00040 * RT1 (output) COMPLEX 00041 * The eigenvalue of larger modulus. 00042 * 00043 * RT2 (output) COMPLEX 00044 * The eigenvalue of smaller modulus. 00045 * 00046 * EVSCAL (output) COMPLEX 00047 * The complex value by which the eigenvector matrix was scaled 00048 * to make it orthonormal. If EVSCAL is zero, the eigenvectors 00049 * were not computed. This means one of two things: the 2-by-2 00050 * matrix could not be diagonalized, or the norm of the matrix 00051 * of eigenvectors before scaling was larger than the threshold 00052 * value THRESH (set below). 00053 * 00054 * CS1 (output) COMPLEX 00055 * SN1 (output) COMPLEX 00056 * If EVSCAL .NE. 0, ( CS1, SN1 ) is the unit right eigenvector 00057 * for RT1. 00058 * 00059 * ===================================================================== 00060 * 00061 * .. Parameters .. 00062 REAL ZERO 00063 PARAMETER ( ZERO = 0.0E0 ) 00064 REAL ONE 00065 PARAMETER ( ONE = 1.0E0 ) 00066 COMPLEX CONE 00067 PARAMETER ( CONE = ( 1.0E0, 0.0E0 ) ) 00068 REAL HALF 00069 PARAMETER ( HALF = 0.5E0 ) 00070 REAL THRESH 00071 PARAMETER ( THRESH = 0.1E0 ) 00072 * .. 00073 * .. Local Scalars .. 00074 REAL BABS, EVNORM, TABS, Z 00075 COMPLEX S, T, TMP 00076 * .. 00077 * .. Intrinsic Functions .. 00078 INTRINSIC ABS, MAX, SQRT 00079 * .. 00080 * .. Executable Statements .. 00081 * 00082 * 00083 * Special case: The matrix is actually diagonal. 00084 * To avoid divide by zero later, we treat this case separately. 00085 * 00086 IF( ABS( B ).EQ.ZERO ) THEN 00087 RT1 = A 00088 RT2 = C 00089 IF( ABS( RT1 ).LT.ABS( RT2 ) ) THEN 00090 TMP = RT1 00091 RT1 = RT2 00092 RT2 = TMP 00093 CS1 = ZERO 00094 SN1 = ONE 00095 ELSE 00096 CS1 = ONE 00097 SN1 = ZERO 00098 END IF 00099 ELSE 00100 * 00101 * Compute the eigenvalues and eigenvectors. 00102 * The characteristic equation is 00103 * lambda **2 - (A+C) lambda + (A*C - B*B) 00104 * and we solve it using the quadratic formula. 00105 * 00106 S = ( A+C )*HALF 00107 T = ( A-C )*HALF 00108 * 00109 * Take the square root carefully to avoid over/under flow. 00110 * 00111 BABS = ABS( B ) 00112 TABS = ABS( T ) 00113 Z = MAX( BABS, TABS ) 00114 IF( Z.GT.ZERO ) 00115 $ T = Z*SQRT( ( T / Z )**2+( B / Z )**2 ) 00116 * 00117 * Compute the two eigenvalues. RT1 and RT2 are exchanged 00118 * if necessary so that RT1 will have the greater magnitude. 00119 * 00120 RT1 = S + T 00121 RT2 = S - T 00122 IF( ABS( RT1 ).LT.ABS( RT2 ) ) THEN 00123 TMP = RT1 00124 RT1 = RT2 00125 RT2 = TMP 00126 END IF 00127 * 00128 * Choose CS1 = 1 and SN1 to satisfy the first equation, then 00129 * scale the components of this eigenvector so that the matrix 00130 * of eigenvectors X satisfies X * X**T = I . (No scaling is 00131 * done if the norm of the eigenvalue matrix is less than THRESH.) 00132 * 00133 SN1 = ( RT1-A ) / B 00134 TABS = ABS( SN1 ) 00135 IF( TABS.GT.ONE ) THEN 00136 T = TABS*SQRT( ( ONE / TABS )**2+( SN1 / TABS )**2 ) 00137 ELSE 00138 T = SQRT( CONE+SN1*SN1 ) 00139 END IF 00140 EVNORM = ABS( T ) 00141 IF( EVNORM.GE.THRESH ) THEN 00142 EVSCAL = CONE / T 00143 CS1 = EVSCAL 00144 SN1 = SN1*EVSCAL 00145 ELSE 00146 EVSCAL = ZERO 00147 END IF 00148 END IF 00149 RETURN 00150 * 00151 * End of CLAESY 00152 * 00153 END