LAPACK 3.3.1
Linear Algebra PACKage

zsgt01.f

Go to the documentation of this file.
00001       SUBROUTINE ZSGT01( ITYPE, UPLO, N, M, A, LDA, B, LDB, Z, LDZ, D,
00002      $                   WORK, RWORK, RESULT )
00003 *
00004 *  -- LAPACK test routine (version 3.1) --
00005 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
00006 *     November 2006
00007 *
00008 *     modified August 1997, a new parameter M is added to the calling
00009 *     sequence.
00010 *
00011 *     .. Scalar Arguments ..
00012       CHARACTER          UPLO
00013       INTEGER            ITYPE, LDA, LDB, LDZ, M, N
00014 *     ..
00015 *     .. Array Arguments ..
00016       DOUBLE PRECISION   D( * ), RESULT( * ), RWORK( * )
00017       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * ),
00018      $                   Z( LDZ, * )
00019 *     ..
00020 *
00021 *  Purpose
00022 *  =======
00023 *
00024 *  CDGT01 checks a decomposition of the form
00025 *
00026 *     A Z   =  B Z D or
00027 *     A B Z =  Z D or
00028 *     B A Z =  Z D
00029 *
00030 *  where A is a Hermitian matrix, B is Hermitian positive definite,
00031 *  Z is unitary, and D is diagonal.
00032 *
00033 *  One of the following test ratios is computed:
00034 *
00035 *  ITYPE = 1:  RESULT(1) = | A Z - B Z D | / ( |A| |Z| n ulp )
00036 *
00037 *  ITYPE = 2:  RESULT(1) = | A B Z - Z D | / ( |A| |Z| n ulp )
00038 *
00039 *  ITYPE = 3:  RESULT(1) = | B A Z - Z D | / ( |A| |Z| n ulp )
00040 *
00041 *  Arguments
00042 *  =========
00043 *
00044 *  ITYPE   (input) INTEGER
00045 *          The form of the Hermitian generalized eigenproblem.
00046 *          = 1:  A*z = (lambda)*B*z
00047 *          = 2:  A*B*z = (lambda)*z
00048 *          = 3:  B*A*z = (lambda)*z
00049 *
00050 *  UPLO    (input) CHARACTER*1
00051 *          Specifies whether the upper or lower triangular part of the
00052 *          Hermitian matrices A and B is stored.
00053 *          = 'U':  Upper triangular
00054 *          = 'L':  Lower triangular
00055 *
00056 *  N       (input) INTEGER
00057 *          The order of the matrix A.  N >= 0.
00058 *
00059 *  M       (input) INTEGER
00060 *          The number of eigenvalues found.  M >= 0.
00061 *
00062 *  A       (input) COMPLEX*16 array, dimension (LDA, N)
00063 *          The original Hermitian matrix A.
00064 *
00065 *  LDA     (input) INTEGER
00066 *          The leading dimension of the array A.  LDA >= max(1,N).
00067 *
00068 *  B       (input) COMPLEX*16 array, dimension (LDB, N)
00069 *          The original Hermitian positive definite matrix B.
00070 *
00071 *  LDB     (input) INTEGER
00072 *          The leading dimension of the array B.  LDB >= max(1,N).
00073 *
00074 *  Z       (input) COMPLEX*16 array, dimension (LDZ, M)
00075 *          The computed eigenvectors of the generalized eigenproblem.
00076 *
00077 *  LDZ     (input) INTEGER
00078 *          The leading dimension of the array Z.  LDZ >= max(1,N).
00079 *
00080 *  D       (input) DOUBLE PRECISION array, dimension (M)
00081 *          The computed eigenvalues of the generalized eigenproblem.
00082 *
00083 *  WORK    (workspace) COMPLEX*16 array, dimension (N*N)
00084 *
00085 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
00086 *
00087 *  RESULT  (output) DOUBLE PRECISION array, dimension (1)
00088 *          The test ratio as described above.
00089 *
00090 *  =====================================================================
00091 *
00092 *     .. Parameters ..
00093       DOUBLE PRECISION   ZERO, ONE
00094       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
00095       COMPLEX*16         CZERO, CONE
00096       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
00097      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
00098 *     ..
00099 *     .. Local Scalars ..
00100       INTEGER            I
00101       DOUBLE PRECISION   ANORM, ULP
00102 *     ..
00103 *     .. External Functions ..
00104       DOUBLE PRECISION   DLAMCH, ZLANGE, ZLANHE
00105       EXTERNAL           DLAMCH, ZLANGE, ZLANHE
00106 *     ..
00107 *     .. External Subroutines ..
00108       EXTERNAL           ZDSCAL, ZHEMM
00109 *     ..
00110 *     .. Executable Statements ..
00111 *
00112       RESULT( 1 ) = ZERO
00113       IF( N.LE.0 )
00114      $   RETURN
00115 *
00116       ULP = DLAMCH( 'Epsilon' )
00117 *
00118 *     Compute product of 1-norms of A and Z.
00119 *
00120       ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK )*
00121      $        ZLANGE( '1', N, M, Z, LDZ, RWORK )
00122       IF( ANORM.EQ.ZERO )
00123      $   ANORM = ONE
00124 *
00125       IF( ITYPE.EQ.1 ) THEN
00126 *
00127 *        Norm of AZ - BZD
00128 *
00129          CALL ZHEMM( 'Left', UPLO, N, M, CONE, A, LDA, Z, LDZ, CZERO,
00130      $               WORK, N )
00131          DO 10 I = 1, M
00132             CALL ZDSCAL( N, D( I ), Z( 1, I ), 1 )
00133    10    CONTINUE
00134          CALL ZHEMM( 'Left', UPLO, N, M, CONE, B, LDB, Z, LDZ, -CONE,
00135      $               WORK, N )
00136 *
00137          RESULT( 1 ) = ( ZLANGE( '1', N, M, WORK, N, RWORK ) / ANORM ) /
00138      $                 ( N*ULP )
00139 *
00140       ELSE IF( ITYPE.EQ.2 ) THEN
00141 *
00142 *        Norm of ABZ - ZD
00143 *
00144          CALL ZHEMM( 'Left', UPLO, N, M, CONE, B, LDB, Z, LDZ, CZERO,
00145      $               WORK, N )
00146          DO 20 I = 1, M
00147             CALL ZDSCAL( N, D( I ), Z( 1, I ), 1 )
00148    20    CONTINUE
00149          CALL ZHEMM( 'Left', UPLO, N, M, CONE, A, LDA, WORK, N, -CONE,
00150      $               Z, LDZ )
00151 *
00152          RESULT( 1 ) = ( ZLANGE( '1', N, M, Z, LDZ, RWORK ) / ANORM ) /
00153      $                 ( N*ULP )
00154 *
00155       ELSE IF( ITYPE.EQ.3 ) THEN
00156 *
00157 *        Norm of BAZ - ZD
00158 *
00159          CALL ZHEMM( 'Left', UPLO, N, M, CONE, A, LDA, Z, LDZ, CZERO,
00160      $               WORK, N )
00161          DO 30 I = 1, M
00162             CALL ZDSCAL( N, D( I ), Z( 1, I ), 1 )
00163    30    CONTINUE
00164          CALL ZHEMM( 'Left', UPLO, N, M, CONE, B, LDB, WORK, N, -CONE,
00165      $               Z, LDZ )
00166 *
00167          RESULT( 1 ) = ( ZLANGE( '1', N, M, Z, LDZ, RWORK ) / ANORM ) /
00168      $                 ( N*ULP )
00169       END IF
00170 *
00171       RETURN
00172 *
00173 *     End of CDGT01
00174 *
00175       END
 All Files Functions