LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE ZLARTG( F, G, CS, SN, R ) 00002 * 00003 * -- LAPACK auxiliary routine (version 3.2) -- 00004 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00005 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00006 * November 2006 00007 * 00008 * .. Scalar Arguments .. 00009 DOUBLE PRECISION CS 00010 COMPLEX*16 F, G, R, SN 00011 * .. 00012 * 00013 * Purpose 00014 * ======= 00015 * 00016 * ZLARTG generates a plane rotation so that 00017 * 00018 * [ CS SN ] [ F ] [ R ] 00019 * [ __ ] . [ ] = [ ] where CS**2 + |SN|**2 = 1. 00020 * [ -SN CS ] [ G ] [ 0 ] 00021 * 00022 * This is a faster version of the BLAS1 routine ZROTG, except for 00023 * the following differences: 00024 * F and G are unchanged on return. 00025 * If G=0, then CS=1 and SN=0. 00026 * If F=0, then CS=0 and SN is chosen so that R is real. 00027 * 00028 * Arguments 00029 * ========= 00030 * 00031 * F (input) COMPLEX*16 00032 * The first component of vector to be rotated. 00033 * 00034 * G (input) COMPLEX*16 00035 * The second component of vector to be rotated. 00036 * 00037 * CS (output) DOUBLE PRECISION 00038 * The cosine of the rotation. 00039 * 00040 * SN (output) COMPLEX*16 00041 * The sine of the rotation. 00042 * 00043 * R (output) COMPLEX*16 00044 * The nonzero component of the rotated vector. 00045 * 00046 * Further Details 00047 * ======= ======= 00048 * 00049 * 3-5-96 - Modified with a new algorithm by W. Kahan and J. Demmel 00050 * 00051 * This version has a few statements commented out for thread safety 00052 * (machine parameters are computed on each entry). 10 feb 03, SJH. 00053 * 00054 * ===================================================================== 00055 * 00056 * .. Parameters .. 00057 DOUBLE PRECISION TWO, ONE, ZERO 00058 PARAMETER ( TWO = 2.0D+0, ONE = 1.0D+0, ZERO = 0.0D+0 ) 00059 COMPLEX*16 CZERO 00060 PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) ) 00061 * .. 00062 * .. Local Scalars .. 00063 * LOGICAL FIRST 00064 INTEGER COUNT, I 00065 DOUBLE PRECISION D, DI, DR, EPS, F2, F2S, G2, G2S, SAFMIN, 00066 $ SAFMN2, SAFMX2, SCALE 00067 COMPLEX*16 FF, FS, GS 00068 * .. 00069 * .. External Functions .. 00070 DOUBLE PRECISION DLAMCH, DLAPY2 00071 EXTERNAL DLAMCH, DLAPY2 00072 * .. 00073 * .. Intrinsic Functions .. 00074 INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, INT, LOG, 00075 $ MAX, SQRT 00076 * .. 00077 * .. Statement Functions .. 00078 DOUBLE PRECISION ABS1, ABSSQ 00079 * .. 00080 * .. Save statement .. 00081 * SAVE FIRST, SAFMX2, SAFMIN, SAFMN2 00082 * .. 00083 * .. Data statements .. 00084 * DATA FIRST / .TRUE. / 00085 * .. 00086 * .. Statement Function definitions .. 00087 ABS1( FF ) = MAX( ABS( DBLE( FF ) ), ABS( DIMAG( FF ) ) ) 00088 ABSSQ( FF ) = DBLE( FF )**2 + DIMAG( FF )**2 00089 * .. 00090 * .. Executable Statements .. 00091 * 00092 * IF( FIRST ) THEN 00093 SAFMIN = DLAMCH( 'S' ) 00094 EPS = DLAMCH( 'E' ) 00095 SAFMN2 = DLAMCH( 'B' )**INT( LOG( SAFMIN / EPS ) / 00096 $ LOG( DLAMCH( 'B' ) ) / TWO ) 00097 SAFMX2 = ONE / SAFMN2 00098 * FIRST = .FALSE. 00099 * END IF 00100 SCALE = MAX( ABS1( F ), ABS1( G ) ) 00101 FS = F 00102 GS = G 00103 COUNT = 0 00104 IF( SCALE.GE.SAFMX2 ) THEN 00105 10 CONTINUE 00106 COUNT = COUNT + 1 00107 FS = FS*SAFMN2 00108 GS = GS*SAFMN2 00109 SCALE = SCALE*SAFMN2 00110 IF( SCALE.GE.SAFMX2 ) 00111 $ GO TO 10 00112 ELSE IF( SCALE.LE.SAFMN2 ) THEN 00113 IF( G.EQ.CZERO ) THEN 00114 CS = ONE 00115 SN = CZERO 00116 R = F 00117 RETURN 00118 END IF 00119 20 CONTINUE 00120 COUNT = COUNT - 1 00121 FS = FS*SAFMX2 00122 GS = GS*SAFMX2 00123 SCALE = SCALE*SAFMX2 00124 IF( SCALE.LE.SAFMN2 ) 00125 $ GO TO 20 00126 END IF 00127 F2 = ABSSQ( FS ) 00128 G2 = ABSSQ( GS ) 00129 IF( F2.LE.MAX( G2, ONE )*SAFMIN ) THEN 00130 * 00131 * This is a rare case: F is very small. 00132 * 00133 IF( F.EQ.CZERO ) THEN 00134 CS = ZERO 00135 R = DLAPY2( DBLE( G ), DIMAG( G ) ) 00136 * Do complex/real division explicitly with two real divisions 00137 D = DLAPY2( DBLE( GS ), DIMAG( GS ) ) 00138 SN = DCMPLX( DBLE( GS ) / D, -DIMAG( GS ) / D ) 00139 RETURN 00140 END IF 00141 F2S = DLAPY2( DBLE( FS ), DIMAG( FS ) ) 00142 * G2 and G2S are accurate 00143 * G2 is at least SAFMIN, and G2S is at least SAFMN2 00144 G2S = SQRT( G2 ) 00145 * Error in CS from underflow in F2S is at most 00146 * UNFL / SAFMN2 .lt. sqrt(UNFL*EPS) .lt. EPS 00147 * If MAX(G2,ONE)=G2, then F2 .lt. G2*SAFMIN, 00148 * and so CS .lt. sqrt(SAFMIN) 00149 * If MAX(G2,ONE)=ONE, then F2 .lt. SAFMIN 00150 * and so CS .lt. sqrt(SAFMIN)/SAFMN2 = sqrt(EPS) 00151 * Therefore, CS = F2S/G2S / sqrt( 1 + (F2S/G2S)**2 ) = F2S/G2S 00152 CS = F2S / G2S 00153 * Make sure abs(FF) = 1 00154 * Do complex/real division explicitly with 2 real divisions 00155 IF( ABS1( F ).GT.ONE ) THEN 00156 D = DLAPY2( DBLE( F ), DIMAG( F ) ) 00157 FF = DCMPLX( DBLE( F ) / D, DIMAG( F ) / D ) 00158 ELSE 00159 DR = SAFMX2*DBLE( F ) 00160 DI = SAFMX2*DIMAG( F ) 00161 D = DLAPY2( DR, DI ) 00162 FF = DCMPLX( DR / D, DI / D ) 00163 END IF 00164 SN = FF*DCMPLX( DBLE( GS ) / G2S, -DIMAG( GS ) / G2S ) 00165 R = CS*F + SN*G 00166 ELSE 00167 * 00168 * This is the most common case. 00169 * Neither F2 nor F2/G2 are less than SAFMIN 00170 * F2S cannot overflow, and it is accurate 00171 * 00172 F2S = SQRT( ONE+G2 / F2 ) 00173 * Do the F2S(real)*FS(complex) multiply with two real multiplies 00174 R = DCMPLX( F2S*DBLE( FS ), F2S*DIMAG( FS ) ) 00175 CS = ONE / F2S 00176 D = F2 + G2 00177 * Do complex/real division explicitly with two real divisions 00178 SN = DCMPLX( DBLE( R ) / D, DIMAG( R ) / D ) 00179 SN = SN*DCONJG( GS ) 00180 IF( COUNT.NE.0 ) THEN 00181 IF( COUNT.GT.0 ) THEN 00182 DO 30 I = 1, COUNT 00183 R = R*SAFMX2 00184 30 CONTINUE 00185 ELSE 00186 DO 40 I = 1, -COUNT 00187 R = R*SAFMN2 00188 40 CONTINUE 00189 END IF 00190 END IF 00191 END IF 00192 RETURN 00193 * 00194 * End of ZLARTG 00195 * 00196 END