LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE ZQRT13( SCALE, M, N, A, LDA, NORMA, ISEED ) 00002 * 00003 * -- LAPACK test routine (version 3.1) -- 00004 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 00005 * November 2006 00006 * 00007 * .. Scalar Arguments .. 00008 INTEGER LDA, M, N, SCALE 00009 DOUBLE PRECISION NORMA 00010 * .. 00011 * .. Array Arguments .. 00012 INTEGER ISEED( 4 ) 00013 COMPLEX*16 A( LDA, * ) 00014 * .. 00015 * 00016 * Purpose 00017 * ======= 00018 * 00019 * ZQRT13 generates a full-rank matrix that may be scaled to have large 00020 * or small norm. 00021 * 00022 * Arguments 00023 * ========= 00024 * 00025 * SCALE (input) INTEGER 00026 * SCALE = 1: normally scaled matrix 00027 * SCALE = 2: matrix scaled up 00028 * SCALE = 3: matrix scaled down 00029 * 00030 * M (input) INTEGER 00031 * The number of rows of the matrix A. 00032 * 00033 * N (input) INTEGER 00034 * The number of columns of A. 00035 * 00036 * A (output) COMPLEX*16 array, dimension (LDA,N) 00037 * The M-by-N matrix A. 00038 * 00039 * LDA (input) INTEGER 00040 * The leading dimension of the array A. 00041 * 00042 * NORMA (output) DOUBLE PRECISION 00043 * The one-norm of A. 00044 * 00045 * ISEED (input/output) integer array, dimension (4) 00046 * Seed for random number generator 00047 * 00048 * ===================================================================== 00049 * 00050 * .. Parameters .. 00051 DOUBLE PRECISION ONE 00052 PARAMETER ( ONE = 1.0D0 ) 00053 * .. 00054 * .. Local Scalars .. 00055 INTEGER INFO, J 00056 DOUBLE PRECISION BIGNUM, SMLNUM 00057 * .. 00058 * .. External Functions .. 00059 DOUBLE PRECISION DLAMCH, DZASUM, ZLANGE 00060 EXTERNAL DLAMCH, DZASUM, ZLANGE 00061 * .. 00062 * .. External Subroutines .. 00063 EXTERNAL DLABAD, ZLARNV, ZLASCL 00064 * .. 00065 * .. Intrinsic Functions .. 00066 INTRINSIC DBLE, DCMPLX, SIGN 00067 * .. 00068 * .. Local Arrays .. 00069 DOUBLE PRECISION DUMMY( 1 ) 00070 * .. 00071 * .. Executable Statements .. 00072 * 00073 IF( M.LE.0 .OR. N.LE.0 ) 00074 $ RETURN 00075 * 00076 * benign matrix 00077 * 00078 DO 10 J = 1, N 00079 CALL ZLARNV( 2, ISEED, M, A( 1, J ) ) 00080 IF( J.LE.M ) THEN 00081 A( J, J ) = A( J, J ) + DCMPLX( SIGN( DZASUM( M, A( 1, J ), 00082 $ 1 ), DBLE( A( J, J ) ) ) ) 00083 END IF 00084 10 CONTINUE 00085 * 00086 * scaled versions 00087 * 00088 IF( SCALE.NE.1 ) THEN 00089 NORMA = ZLANGE( 'Max', M, N, A, LDA, DUMMY ) 00090 SMLNUM = DLAMCH( 'Safe minimum' ) 00091 BIGNUM = ONE / SMLNUM 00092 CALL DLABAD( SMLNUM, BIGNUM ) 00093 SMLNUM = SMLNUM / DLAMCH( 'Epsilon' ) 00094 BIGNUM = ONE / SMLNUM 00095 * 00096 IF( SCALE.EQ.2 ) THEN 00097 * 00098 * matrix scaled up 00099 * 00100 CALL ZLASCL( 'General', 0, 0, NORMA, BIGNUM, M, N, A, LDA, 00101 $ INFO ) 00102 ELSE IF( SCALE.EQ.3 ) THEN 00103 * 00104 * matrix scaled down 00105 * 00106 CALL ZLASCL( 'General', 0, 0, NORMA, SMLNUM, M, N, A, LDA, 00107 $ INFO ) 00108 END IF 00109 END IF 00110 * 00111 NORMA = ZLANGE( 'One-norm', M, N, A, LDA, DUMMY ) 00112 RETURN 00113 * 00114 * End of ZQRT13 00115 * 00116 END