LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE ZSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC) 00002 * .. Scalar Arguments .. 00003 DOUBLE COMPLEX ALPHA,BETA 00004 INTEGER K,LDA,LDC,N 00005 CHARACTER TRANS,UPLO 00006 * .. 00007 * .. Array Arguments .. 00008 DOUBLE COMPLEX A(LDA,*),C(LDC,*) 00009 * .. 00010 * 00011 * Purpose 00012 * ======= 00013 * 00014 * ZSYRK performs one of the symmetric rank k operations 00015 * 00016 * C := alpha*A*A**T + beta*C, 00017 * 00018 * or 00019 * 00020 * C := alpha*A**T*A + beta*C, 00021 * 00022 * where alpha and beta are scalars, C is an n by n symmetric matrix 00023 * and A is an n by k matrix in the first case and a k by n matrix 00024 * in the second case. 00025 * 00026 * Arguments 00027 * ========== 00028 * 00029 * UPLO - CHARACTER*1. 00030 * On entry, UPLO specifies whether the upper or lower 00031 * triangular part of the array C is to be referenced as 00032 * follows: 00033 * 00034 * UPLO = 'U' or 'u' Only the upper triangular part of C 00035 * is to be referenced. 00036 * 00037 * UPLO = 'L' or 'l' Only the lower triangular part of C 00038 * is to be referenced. 00039 * 00040 * Unchanged on exit. 00041 * 00042 * TRANS - CHARACTER*1. 00043 * On entry, TRANS specifies the operation to be performed as 00044 * follows: 00045 * 00046 * TRANS = 'N' or 'n' C := alpha*A*A**T + beta*C. 00047 * 00048 * TRANS = 'T' or 't' C := alpha*A**T*A + beta*C. 00049 * 00050 * Unchanged on exit. 00051 * 00052 * N - INTEGER. 00053 * On entry, N specifies the order of the matrix C. N must be 00054 * at least zero. 00055 * Unchanged on exit. 00056 * 00057 * K - INTEGER. 00058 * On entry with TRANS = 'N' or 'n', K specifies the number 00059 * of columns of the matrix A, and on entry with 00060 * TRANS = 'T' or 't', K specifies the number of rows of the 00061 * matrix A. K must be at least zero. 00062 * Unchanged on exit. 00063 * 00064 * ALPHA - COMPLEX*16 . 00065 * On entry, ALPHA specifies the scalar alpha. 00066 * Unchanged on exit. 00067 * 00068 * A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is 00069 * k when TRANS = 'N' or 'n', and is n otherwise. 00070 * Before entry with TRANS = 'N' or 'n', the leading n by k 00071 * part of the array A must contain the matrix A, otherwise 00072 * the leading k by n part of the array A must contain the 00073 * matrix A. 00074 * Unchanged on exit. 00075 * 00076 * LDA - INTEGER. 00077 * On entry, LDA specifies the first dimension of A as declared 00078 * in the calling (sub) program. When TRANS = 'N' or 'n' 00079 * then LDA must be at least max( 1, n ), otherwise LDA must 00080 * be at least max( 1, k ). 00081 * Unchanged on exit. 00082 * 00083 * BETA - COMPLEX*16 . 00084 * On entry, BETA specifies the scalar beta. 00085 * Unchanged on exit. 00086 * 00087 * C - COMPLEX*16 array of DIMENSION ( LDC, n ). 00088 * Before entry with UPLO = 'U' or 'u', the leading n by n 00089 * upper triangular part of the array C must contain the upper 00090 * triangular part of the symmetric matrix and the strictly 00091 * lower triangular part of C is not referenced. On exit, the 00092 * upper triangular part of the array C is overwritten by the 00093 * upper triangular part of the updated matrix. 00094 * Before entry with UPLO = 'L' or 'l', the leading n by n 00095 * lower triangular part of the array C must contain the lower 00096 * triangular part of the symmetric matrix and the strictly 00097 * upper triangular part of C is not referenced. On exit, the 00098 * lower triangular part of the array C is overwritten by the 00099 * lower triangular part of the updated matrix. 00100 * 00101 * LDC - INTEGER. 00102 * On entry, LDC specifies the first dimension of C as declared 00103 * in the calling (sub) program. LDC must be at least 00104 * max( 1, n ). 00105 * Unchanged on exit. 00106 * 00107 * Further Details 00108 * =============== 00109 * 00110 * Level 3 Blas routine. 00111 * 00112 * -- Written on 8-February-1989. 00113 * Jack Dongarra, Argonne National Laboratory. 00114 * Iain Duff, AERE Harwell. 00115 * Jeremy Du Croz, Numerical Algorithms Group Ltd. 00116 * Sven Hammarling, Numerical Algorithms Group Ltd. 00117 * 00118 * ===================================================================== 00119 * 00120 * .. External Functions .. 00121 LOGICAL LSAME 00122 EXTERNAL LSAME 00123 * .. 00124 * .. External Subroutines .. 00125 EXTERNAL XERBLA 00126 * .. 00127 * .. Intrinsic Functions .. 00128 INTRINSIC MAX 00129 * .. 00130 * .. Local Scalars .. 00131 DOUBLE COMPLEX TEMP 00132 INTEGER I,INFO,J,L,NROWA 00133 LOGICAL UPPER 00134 * .. 00135 * .. Parameters .. 00136 DOUBLE COMPLEX ONE 00137 PARAMETER (ONE= (1.0D+0,0.0D+0)) 00138 DOUBLE COMPLEX ZERO 00139 PARAMETER (ZERO= (0.0D+0,0.0D+0)) 00140 * .. 00141 * 00142 * Test the input parameters. 00143 * 00144 IF (LSAME(TRANS,'N')) THEN 00145 NROWA = N 00146 ELSE 00147 NROWA = K 00148 END IF 00149 UPPER = LSAME(UPLO,'U') 00150 * 00151 INFO = 0 00152 IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN 00153 INFO = 1 00154 ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND. 00155 + (.NOT.LSAME(TRANS,'T'))) THEN 00156 INFO = 2 00157 ELSE IF (N.LT.0) THEN 00158 INFO = 3 00159 ELSE IF (K.LT.0) THEN 00160 INFO = 4 00161 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN 00162 INFO = 7 00163 ELSE IF (LDC.LT.MAX(1,N)) THEN 00164 INFO = 10 00165 END IF 00166 IF (INFO.NE.0) THEN 00167 CALL XERBLA('ZSYRK ',INFO) 00168 RETURN 00169 END IF 00170 * 00171 * Quick return if possible. 00172 * 00173 IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR. 00174 + (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN 00175 * 00176 * And when alpha.eq.zero. 00177 * 00178 IF (ALPHA.EQ.ZERO) THEN 00179 IF (UPPER) THEN 00180 IF (BETA.EQ.ZERO) THEN 00181 DO 20 J = 1,N 00182 DO 10 I = 1,J 00183 C(I,J) = ZERO 00184 10 CONTINUE 00185 20 CONTINUE 00186 ELSE 00187 DO 40 J = 1,N 00188 DO 30 I = 1,J 00189 C(I,J) = BETA*C(I,J) 00190 30 CONTINUE 00191 40 CONTINUE 00192 END IF 00193 ELSE 00194 IF (BETA.EQ.ZERO) THEN 00195 DO 60 J = 1,N 00196 DO 50 I = J,N 00197 C(I,J) = ZERO 00198 50 CONTINUE 00199 60 CONTINUE 00200 ELSE 00201 DO 80 J = 1,N 00202 DO 70 I = J,N 00203 C(I,J) = BETA*C(I,J) 00204 70 CONTINUE 00205 80 CONTINUE 00206 END IF 00207 END IF 00208 RETURN 00209 END IF 00210 * 00211 * Start the operations. 00212 * 00213 IF (LSAME(TRANS,'N')) THEN 00214 * 00215 * Form C := alpha*A*A**T + beta*C. 00216 * 00217 IF (UPPER) THEN 00218 DO 130 J = 1,N 00219 IF (BETA.EQ.ZERO) THEN 00220 DO 90 I = 1,J 00221 C(I,J) = ZERO 00222 90 CONTINUE 00223 ELSE IF (BETA.NE.ONE) THEN 00224 DO 100 I = 1,J 00225 C(I,J) = BETA*C(I,J) 00226 100 CONTINUE 00227 END IF 00228 DO 120 L = 1,K 00229 IF (A(J,L).NE.ZERO) THEN 00230 TEMP = ALPHA*A(J,L) 00231 DO 110 I = 1,J 00232 C(I,J) = C(I,J) + TEMP*A(I,L) 00233 110 CONTINUE 00234 END IF 00235 120 CONTINUE 00236 130 CONTINUE 00237 ELSE 00238 DO 180 J = 1,N 00239 IF (BETA.EQ.ZERO) THEN 00240 DO 140 I = J,N 00241 C(I,J) = ZERO 00242 140 CONTINUE 00243 ELSE IF (BETA.NE.ONE) THEN 00244 DO 150 I = J,N 00245 C(I,J) = BETA*C(I,J) 00246 150 CONTINUE 00247 END IF 00248 DO 170 L = 1,K 00249 IF (A(J,L).NE.ZERO) THEN 00250 TEMP = ALPHA*A(J,L) 00251 DO 160 I = J,N 00252 C(I,J) = C(I,J) + TEMP*A(I,L) 00253 160 CONTINUE 00254 END IF 00255 170 CONTINUE 00256 180 CONTINUE 00257 END IF 00258 ELSE 00259 * 00260 * Form C := alpha*A**T*A + beta*C. 00261 * 00262 IF (UPPER) THEN 00263 DO 210 J = 1,N 00264 DO 200 I = 1,J 00265 TEMP = ZERO 00266 DO 190 L = 1,K 00267 TEMP = TEMP + A(L,I)*A(L,J) 00268 190 CONTINUE 00269 IF (BETA.EQ.ZERO) THEN 00270 C(I,J) = ALPHA*TEMP 00271 ELSE 00272 C(I,J) = ALPHA*TEMP + BETA*C(I,J) 00273 END IF 00274 200 CONTINUE 00275 210 CONTINUE 00276 ELSE 00277 DO 240 J = 1,N 00278 DO 230 I = J,N 00279 TEMP = ZERO 00280 DO 220 L = 1,K 00281 TEMP = TEMP + A(L,I)*A(L,J) 00282 220 CONTINUE 00283 IF (BETA.EQ.ZERO) THEN 00284 C(I,J) = ALPHA*TEMP 00285 ELSE 00286 C(I,J) = ALPHA*TEMP + BETA*C(I,J) 00287 END IF 00288 230 CONTINUE 00289 240 CONTINUE 00290 END IF 00291 END IF 00292 * 00293 RETURN 00294 * 00295 * End of ZSYRK . 00296 * 00297 END