LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE DPST01( UPLO, N, A, LDA, AFAC, LDAFAC, PERM, LDPERM, 00002 $ PIV, RWORK, RESID, RANK ) 00003 * 00004 * -- LAPACK test routine (version 3.1) -- 00005 * Craig Lucas, University of Manchester / NAG Ltd. 00006 * October, 2008 00007 * 00008 * .. Scalar Arguments .. 00009 DOUBLE PRECISION RESID 00010 INTEGER LDA, LDAFAC, LDPERM, N, RANK 00011 CHARACTER UPLO 00012 * .. 00013 * .. Array Arguments .. 00014 DOUBLE PRECISION A( LDA, * ), AFAC( LDAFAC, * ), 00015 $ PERM( LDPERM, * ), RWORK( * ) 00016 INTEGER PIV( * ) 00017 * .. 00018 * 00019 * Purpose 00020 * ======= 00021 * 00022 * DPST01 reconstructs a symmetric positive semidefinite matrix A 00023 * from its L or U factors and the permutation matrix P and computes 00024 * the residual 00025 * norm( P*L*L'*P' - A ) / ( N * norm(A) * EPS ) or 00026 * norm( P*U'*U*P' - A ) / ( N * norm(A) * EPS ), 00027 * where EPS is the machine epsilon. 00028 * 00029 * Arguments 00030 * ========== 00031 * 00032 * UPLO (input) CHARACTER*1 00033 * Specifies whether the upper or lower triangular part of the 00034 * symmetric matrix A is stored: 00035 * = 'U': Upper triangular 00036 * = 'L': Lower triangular 00037 * 00038 * N (input) INTEGER 00039 * The number of rows and columns of the matrix A. N >= 0. 00040 * 00041 * A (input) DOUBLE PRECISION array, dimension (LDA,N) 00042 * The original symmetric matrix A. 00043 * 00044 * LDA (input) INTEGER 00045 * The leading dimension of the array A. LDA >= max(1,N) 00046 * 00047 * AFAC (input) DOUBLE PRECISION array, dimension (LDAFAC,N) 00048 * The factor L or U from the L*L' or U'*U 00049 * factorization of A. 00050 * 00051 * LDAFAC (input) INTEGER 00052 * The leading dimension of the array AFAC. LDAFAC >= max(1,N). 00053 * 00054 * PERM (output) DOUBLE PRECISION array, dimension (LDPERM,N) 00055 * Overwritten with the reconstructed matrix, and then with the 00056 * difference P*L*L'*P' - A (or P*U'*U*P' - A) 00057 * 00058 * LDPERM (input) INTEGER 00059 * The leading dimension of the array PERM. 00060 * LDAPERM >= max(1,N). 00061 * 00062 * PIV (input) INTEGER array, dimension (N) 00063 * PIV is such that the nonzero entries are 00064 * P( PIV( K ), K ) = 1. 00065 * 00066 * RWORK (workspace) DOUBLE PRECISION array, dimension (N) 00067 * 00068 * RESID (output) DOUBLE PRECISION 00069 * If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS ) 00070 * If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS ) 00071 * 00072 * ===================================================================== 00073 * 00074 * .. Parameters .. 00075 DOUBLE PRECISION ZERO, ONE 00076 PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) 00077 * .. 00078 * .. Local Scalars .. 00079 DOUBLE PRECISION ANORM, EPS, T 00080 INTEGER I, J, K 00081 * .. 00082 * .. External Functions .. 00083 DOUBLE PRECISION DDOT, DLAMCH, DLANSY 00084 LOGICAL LSAME 00085 EXTERNAL DDOT, DLAMCH, DLANSY, LSAME 00086 * .. 00087 * .. External Subroutines .. 00088 EXTERNAL DSCAL, DSYR, DTRMV 00089 * .. 00090 * .. Intrinsic Functions .. 00091 INTRINSIC DBLE 00092 * .. 00093 * .. Executable Statements .. 00094 * 00095 * Quick exit if N = 0. 00096 * 00097 IF( N.LE.0 ) THEN 00098 RESID = ZERO 00099 RETURN 00100 END IF 00101 * 00102 * Exit with RESID = 1/EPS if ANORM = 0. 00103 * 00104 EPS = DLAMCH( 'Epsilon' ) 00105 ANORM = DLANSY( '1', UPLO, N, A, LDA, RWORK ) 00106 IF( ANORM.LE.ZERO ) THEN 00107 RESID = ONE / EPS 00108 RETURN 00109 END IF 00110 * 00111 * Compute the product U'*U, overwriting U. 00112 * 00113 IF( LSAME( UPLO, 'U' ) ) THEN 00114 * 00115 IF( RANK.LT.N ) THEN 00116 DO 110 J = RANK + 1, N 00117 DO 100 I = RANK + 1, J 00118 AFAC( I, J ) = ZERO 00119 100 CONTINUE 00120 110 CONTINUE 00121 END IF 00122 * 00123 DO 120 K = N, 1, -1 00124 * 00125 * Compute the (K,K) element of the result. 00126 * 00127 T = DDOT( K, AFAC( 1, K ), 1, AFAC( 1, K ), 1 ) 00128 AFAC( K, K ) = T 00129 * 00130 * Compute the rest of column K. 00131 * 00132 CALL DTRMV( 'Upper', 'Transpose', 'Non-unit', K-1, AFAC, 00133 $ LDAFAC, AFAC( 1, K ), 1 ) 00134 * 00135 120 CONTINUE 00136 * 00137 * Compute the product L*L', overwriting L. 00138 * 00139 ELSE 00140 * 00141 IF( RANK.LT.N ) THEN 00142 DO 140 J = RANK + 1, N 00143 DO 130 I = J, N 00144 AFAC( I, J ) = ZERO 00145 130 CONTINUE 00146 140 CONTINUE 00147 END IF 00148 * 00149 DO 150 K = N, 1, -1 00150 * Add a multiple of column K of the factor L to each of 00151 * columns K+1 through N. 00152 * 00153 IF( K+1.LE.N ) 00154 $ CALL DSYR( 'Lower', N-K, ONE, AFAC( K+1, K ), 1, 00155 $ AFAC( K+1, K+1 ), LDAFAC ) 00156 * 00157 * Scale column K by the diagonal element. 00158 * 00159 T = AFAC( K, K ) 00160 CALL DSCAL( N-K+1, T, AFAC( K, K ), 1 ) 00161 150 CONTINUE 00162 * 00163 END IF 00164 * 00165 * Form P*L*L'*P' or P*U'*U*P' 00166 * 00167 IF( LSAME( UPLO, 'U' ) ) THEN 00168 * 00169 DO 170 J = 1, N 00170 DO 160 I = 1, N 00171 IF( PIV( I ).LE.PIV( J ) ) THEN 00172 IF( I.LE.J ) THEN 00173 PERM( PIV( I ), PIV( J ) ) = AFAC( I, J ) 00174 ELSE 00175 PERM( PIV( I ), PIV( J ) ) = AFAC( J, I ) 00176 END IF 00177 END IF 00178 160 CONTINUE 00179 170 CONTINUE 00180 * 00181 * 00182 ELSE 00183 * 00184 DO 190 J = 1, N 00185 DO 180 I = 1, N 00186 IF( PIV( I ).GE.PIV( J ) ) THEN 00187 IF( I.GE.J ) THEN 00188 PERM( PIV( I ), PIV( J ) ) = AFAC( I, J ) 00189 ELSE 00190 PERM( PIV( I ), PIV( J ) ) = AFAC( J, I ) 00191 END IF 00192 END IF 00193 180 CONTINUE 00194 190 CONTINUE 00195 * 00196 END IF 00197 * 00198 * Compute the difference P*L*L'*P' - A (or P*U'*U*P' - A). 00199 * 00200 IF( LSAME( UPLO, 'U' ) ) THEN 00201 DO 210 J = 1, N 00202 DO 200 I = 1, J 00203 PERM( I, J ) = PERM( I, J ) - A( I, J ) 00204 200 CONTINUE 00205 210 CONTINUE 00206 ELSE 00207 DO 230 J = 1, N 00208 DO 220 I = J, N 00209 PERM( I, J ) = PERM( I, J ) - A( I, J ) 00210 220 CONTINUE 00211 230 CONTINUE 00212 END IF 00213 * 00214 * Compute norm( P*L*L'P - A ) / ( N * norm(A) * EPS ), or 00215 * ( P*U'*U*P' - A )/ ( N * norm(A) * EPS ). 00216 * 00217 RESID = DLANSY( '1', UPLO, N, PERM, LDAFAC, RWORK ) 00218 * 00219 RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS 00220 * 00221 RETURN 00222 * 00223 * End of DPST01 00224 * 00225 END