LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE SLAUUM( UPLO, N, A, LDA, INFO ) 00002 * 00003 * -- LAPACK auxiliary routine (version 3.3.1) -- 00004 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00005 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00006 * -- April 2011 -- 00007 * 00008 * .. Scalar Arguments .. 00009 CHARACTER UPLO 00010 INTEGER INFO, LDA, N 00011 * .. 00012 * .. Array Arguments .. 00013 REAL A( LDA, * ) 00014 * .. 00015 * 00016 * Purpose 00017 * ======= 00018 * 00019 * SLAUUM computes the product U * U**T or L**T * L, where the triangular 00020 * factor U or L is stored in the upper or lower triangular part of 00021 * the array A. 00022 * 00023 * If UPLO = 'U' or 'u' then the upper triangle of the result is stored, 00024 * overwriting the factor U in A. 00025 * If UPLO = 'L' or 'l' then the lower triangle of the result is stored, 00026 * overwriting the factor L in A. 00027 * 00028 * This is the blocked form of the algorithm, calling Level 3 BLAS. 00029 * 00030 * Arguments 00031 * ========= 00032 * 00033 * UPLO (input) CHARACTER*1 00034 * Specifies whether the triangular factor stored in the array A 00035 * is upper or lower triangular: 00036 * = 'U': Upper triangular 00037 * = 'L': Lower triangular 00038 * 00039 * N (input) INTEGER 00040 * The order of the triangular factor U or L. N >= 0. 00041 * 00042 * A (input/output) REAL array, dimension (LDA,N) 00043 * On entry, the triangular factor U or L. 00044 * On exit, if UPLO = 'U', the upper triangle of A is 00045 * overwritten with the upper triangle of the product U * U**T; 00046 * if UPLO = 'L', the lower triangle of A is overwritten with 00047 * the lower triangle of the product L**T * L. 00048 * 00049 * LDA (input) INTEGER 00050 * The leading dimension of the array A. LDA >= max(1,N). 00051 * 00052 * INFO (output) INTEGER 00053 * = 0: successful exit 00054 * < 0: if INFO = -k, the k-th argument had an illegal value 00055 * 00056 * ===================================================================== 00057 * 00058 * .. Parameters .. 00059 REAL ONE 00060 PARAMETER ( ONE = 1.0E+0 ) 00061 * .. 00062 * .. Local Scalars .. 00063 LOGICAL UPPER 00064 INTEGER I, IB, NB 00065 * .. 00066 * .. External Functions .. 00067 LOGICAL LSAME 00068 INTEGER ILAENV 00069 EXTERNAL LSAME, ILAENV 00070 * .. 00071 * .. External Subroutines .. 00072 EXTERNAL SGEMM, SLAUU2, SSYRK, STRMM, XERBLA 00073 * .. 00074 * .. Intrinsic Functions .. 00075 INTRINSIC MAX, MIN 00076 * .. 00077 * .. Executable Statements .. 00078 * 00079 * Test the input parameters. 00080 * 00081 INFO = 0 00082 UPPER = LSAME( UPLO, 'U' ) 00083 IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN 00084 INFO = -1 00085 ELSE IF( N.LT.0 ) THEN 00086 INFO = -2 00087 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN 00088 INFO = -4 00089 END IF 00090 IF( INFO.NE.0 ) THEN 00091 CALL XERBLA( 'SLAUUM', -INFO ) 00092 RETURN 00093 END IF 00094 * 00095 * Quick return if possible 00096 * 00097 IF( N.EQ.0 ) 00098 $ RETURN 00099 * 00100 * Determine the block size for this environment. 00101 * 00102 NB = ILAENV( 1, 'SLAUUM', UPLO, N, -1, -1, -1 ) 00103 * 00104 IF( NB.LE.1 .OR. NB.GE.N ) THEN 00105 * 00106 * Use unblocked code 00107 * 00108 CALL SLAUU2( UPLO, N, A, LDA, INFO ) 00109 ELSE 00110 * 00111 * Use blocked code 00112 * 00113 IF( UPPER ) THEN 00114 * 00115 * Compute the product U * U**T. 00116 * 00117 DO 10 I = 1, N, NB 00118 IB = MIN( NB, N-I+1 ) 00119 CALL STRMM( 'Right', 'Upper', 'Transpose', 'Non-unit', 00120 $ I-1, IB, ONE, A( I, I ), LDA, A( 1, I ), 00121 $ LDA ) 00122 CALL SLAUU2( 'Upper', IB, A( I, I ), LDA, INFO ) 00123 IF( I+IB.LE.N ) THEN 00124 CALL SGEMM( 'No transpose', 'Transpose', I-1, IB, 00125 $ N-I-IB+1, ONE, A( 1, I+IB ), LDA, 00126 $ A( I, I+IB ), LDA, ONE, A( 1, I ), LDA ) 00127 CALL SSYRK( 'Upper', 'No transpose', IB, N-I-IB+1, 00128 $ ONE, A( I, I+IB ), LDA, ONE, A( I, I ), 00129 $ LDA ) 00130 END IF 00131 10 CONTINUE 00132 ELSE 00133 * 00134 * Compute the product L**T * L. 00135 * 00136 DO 20 I = 1, N, NB 00137 IB = MIN( NB, N-I+1 ) 00138 CALL STRMM( 'Left', 'Lower', 'Transpose', 'Non-unit', IB, 00139 $ I-1, ONE, A( I, I ), LDA, A( I, 1 ), LDA ) 00140 CALL SLAUU2( 'Lower', IB, A( I, I ), LDA, INFO ) 00141 IF( I+IB.LE.N ) THEN 00142 CALL SGEMM( 'Transpose', 'No transpose', IB, I-1, 00143 $ N-I-IB+1, ONE, A( I+IB, I ), LDA, 00144 $ A( I+IB, 1 ), LDA, ONE, A( I, 1 ), LDA ) 00145 CALL SSYRK( 'Lower', 'Transpose', IB, N-I-IB+1, ONE, 00146 $ A( I+IB, I ), LDA, ONE, A( I, I ), LDA ) 00147 END IF 00148 20 CONTINUE 00149 END IF 00150 END IF 00151 * 00152 RETURN 00153 * 00154 * End of SLAUUM 00155 * 00156 END