LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE CSTT21( N, KBAND, AD, AE, SD, SE, U, LDU, WORK, RWORK, 00002 $ RESULT ) 00003 * 00004 * -- LAPACK test routine (version 3.1) -- 00005 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 00006 * November 2006 00007 * 00008 * .. Scalar Arguments .. 00009 INTEGER KBAND, LDU, N 00010 * .. 00011 * .. Array Arguments .. 00012 REAL AD( * ), AE( * ), RESULT( 2 ), RWORK( * ), 00013 $ SD( * ), SE( * ) 00014 COMPLEX U( LDU, * ), WORK( * ) 00015 * .. 00016 * 00017 * Purpose 00018 * ======= 00019 * 00020 * CSTT21 checks a decomposition of the form 00021 * 00022 * A = U S U* 00023 * 00024 * where * means conjugate transpose, A is real symmetric tridiagonal, 00025 * U is unitary, and S is real and diagonal (if KBAND=0) or symmetric 00026 * tridiagonal (if KBAND=1). Two tests are performed: 00027 * 00028 * RESULT(1) = | A - U S U* | / ( |A| n ulp ) 00029 * 00030 * RESULT(2) = | I - UU* | / ( n ulp ) 00031 * 00032 * Arguments 00033 * ========= 00034 * 00035 * N (input) INTEGER 00036 * The size of the matrix. If it is zero, CSTT21 does nothing. 00037 * It must be at least zero. 00038 * 00039 * KBAND (input) INTEGER 00040 * The bandwidth of the matrix S. It may only be zero or one. 00041 * If zero, then S is diagonal, and SE is not referenced. If 00042 * one, then S is symmetric tri-diagonal. 00043 * 00044 * AD (input) REAL array, dimension (N) 00045 * The diagonal of the original (unfactored) matrix A. A is 00046 * assumed to be real symmetric tridiagonal. 00047 * 00048 * AE (input) REAL array, dimension (N-1) 00049 * The off-diagonal of the original (unfactored) matrix A. A 00050 * is assumed to be symmetric tridiagonal. AE(1) is the (1,2) 00051 * and (2,1) element, AE(2) is the (2,3) and (3,2) element, etc. 00052 * 00053 * SD (input) REAL array, dimension (N) 00054 * The diagonal of the real (symmetric tri-) diagonal matrix S. 00055 * 00056 * SE (input) REAL array, dimension (N-1) 00057 * The off-diagonal of the (symmetric tri-) diagonal matrix S. 00058 * Not referenced if KBSND=0. If KBAND=1, then AE(1) is the 00059 * (1,2) and (2,1) element, SE(2) is the (2,3) and (3,2) 00060 * element, etc. 00061 * 00062 * U (input) COMPLEX array, dimension (LDU, N) 00063 * The unitary matrix in the decomposition. 00064 * 00065 * LDU (input) INTEGER 00066 * The leading dimension of U. LDU must be at least N. 00067 * 00068 * WORK (workspace) COMPLEX array, dimension (N**2) 00069 * 00070 * RWORK (workspace) REAL array, dimension (N) 00071 * 00072 * RESULT (output) REAL array, dimension (2) 00073 * The values computed by the two tests described above. The 00074 * values are currently limited to 1/ulp, to avoid overflow. 00075 * RESULT(1) is always modified. 00076 * 00077 * ===================================================================== 00078 * 00079 * .. Parameters .. 00080 REAL ZERO, ONE 00081 PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) 00082 COMPLEX CZERO, CONE 00083 PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), 00084 $ CONE = ( 1.0E+0, 0.0E+0 ) ) 00085 * .. 00086 * .. Local Scalars .. 00087 INTEGER J 00088 REAL ANORM, TEMP1, TEMP2, ULP, UNFL, WNORM 00089 * .. 00090 * .. External Functions .. 00091 REAL CLANGE, CLANHE, SLAMCH 00092 EXTERNAL CLANGE, CLANHE, SLAMCH 00093 * .. 00094 * .. External Subroutines .. 00095 EXTERNAL CGEMM, CHER, CHER2, CLASET 00096 * .. 00097 * .. Intrinsic Functions .. 00098 INTRINSIC ABS, CMPLX, MAX, MIN, REAL 00099 * .. 00100 * .. Executable Statements .. 00101 * 00102 * 1) Constants 00103 * 00104 RESULT( 1 ) = ZERO 00105 RESULT( 2 ) = ZERO 00106 IF( N.LE.0 ) 00107 $ RETURN 00108 * 00109 UNFL = SLAMCH( 'Safe minimum' ) 00110 ULP = SLAMCH( 'Precision' ) 00111 * 00112 * Do Test 1 00113 * 00114 * Copy A & Compute its 1-Norm: 00115 * 00116 CALL CLASET( 'Full', N, N, CZERO, CZERO, WORK, N ) 00117 * 00118 ANORM = ZERO 00119 TEMP1 = ZERO 00120 * 00121 DO 10 J = 1, N - 1 00122 WORK( ( N+1 )*( J-1 )+1 ) = AD( J ) 00123 WORK( ( N+1 )*( J-1 )+2 ) = AE( J ) 00124 TEMP2 = ABS( AE( J ) ) 00125 ANORM = MAX( ANORM, ABS( AD( J ) )+TEMP1+TEMP2 ) 00126 TEMP1 = TEMP2 00127 10 CONTINUE 00128 * 00129 WORK( N**2 ) = AD( N ) 00130 ANORM = MAX( ANORM, ABS( AD( N ) )+TEMP1, UNFL ) 00131 * 00132 * Norm of A - USU* 00133 * 00134 DO 20 J = 1, N 00135 CALL CHER( 'L', N, -SD( J ), U( 1, J ), 1, WORK, N ) 00136 20 CONTINUE 00137 * 00138 IF( N.GT.1 .AND. KBAND.EQ.1 ) THEN 00139 DO 30 J = 1, N - 1 00140 CALL CHER2( 'L', N, -CMPLX( SE( J ) ), U( 1, J ), 1, 00141 $ U( 1, J+1 ), 1, WORK, N ) 00142 30 CONTINUE 00143 END IF 00144 * 00145 WNORM = CLANHE( '1', 'L', N, WORK, N, RWORK ) 00146 * 00147 IF( ANORM.GT.WNORM ) THEN 00148 RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP ) 00149 ELSE 00150 IF( ANORM.LT.ONE ) THEN 00151 RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP ) 00152 ELSE 00153 RESULT( 1 ) = MIN( WNORM / ANORM, REAL( N ) ) / ( N*ULP ) 00154 END IF 00155 END IF 00156 * 00157 * Do Test 2 00158 * 00159 * Compute UU* - I 00160 * 00161 CALL CGEMM( 'N', 'C', N, N, N, CONE, U, LDU, U, LDU, CZERO, WORK, 00162 $ N ) 00163 * 00164 DO 40 J = 1, N 00165 WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - CONE 00166 40 CONTINUE 00167 * 00168 RESULT( 2 ) = MIN( REAL( N ), CLANGE( '1', N, N, WORK, N, 00169 $ RWORK ) ) / ( N*ULP ) 00170 * 00171 RETURN 00172 * 00173 * End of CSTT21 00174 * 00175 END