LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE CHBT21( UPLO, N, KA, KS, A, LDA, D, E, U, LDU, WORK, 00002 $ RWORK, RESULT ) 00003 * 00004 * -- LAPACK test routine (version 3.1) -- 00005 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 00006 * November 2006 00007 * 00008 * .. Scalar Arguments .. 00009 CHARACTER UPLO 00010 INTEGER KA, KS, LDA, LDU, N 00011 * .. 00012 * .. Array Arguments .. 00013 REAL D( * ), E( * ), RESULT( 2 ), RWORK( * ) 00014 COMPLEX A( LDA, * ), U( LDU, * ), WORK( * ) 00015 * .. 00016 * 00017 * Purpose 00018 * ======= 00019 * 00020 * CHBT21 generally checks a decomposition of the form 00021 * 00022 * A = U S U* 00023 * 00024 * where * means conjugate transpose, A is hermitian banded, U is 00025 * unitary, and S is diagonal (if KS=0) or symmetric 00026 * tridiagonal (if KS=1). 00027 * 00028 * Specifically: 00029 * 00030 * RESULT(1) = | A - U S U* | / ( |A| n ulp ) *and* 00031 * RESULT(2) = | I - UU* | / ( n ulp ) 00032 * 00033 * Arguments 00034 * ========= 00035 * 00036 * UPLO (input) CHARACTER 00037 * If UPLO='U', the upper triangle of A and V will be used and 00038 * the (strictly) lower triangle will not be referenced. 00039 * If UPLO='L', the lower triangle of A and V will be used and 00040 * the (strictly) upper triangle will not be referenced. 00041 * 00042 * N (input) INTEGER 00043 * The size of the matrix. If it is zero, CHBT21 does nothing. 00044 * It must be at least zero. 00045 * 00046 * KA (input) INTEGER 00047 * The bandwidth of the matrix A. It must be at least zero. If 00048 * it is larger than N-1, then max( 0, N-1 ) will be used. 00049 * 00050 * KS (input) INTEGER 00051 * The bandwidth of the matrix S. It may only be zero or one. 00052 * If zero, then S is diagonal, and E is not referenced. If 00053 * one, then S is symmetric tri-diagonal. 00054 * 00055 * A (input) COMPLEX array, dimension (LDA, N) 00056 * The original (unfactored) matrix. It is assumed to be 00057 * hermitian, and only the upper (UPLO='U') or only the lower 00058 * (UPLO='L') will be referenced. 00059 * 00060 * LDA (input) INTEGER 00061 * The leading dimension of A. It must be at least 1 00062 * and at least min( KA, N-1 ). 00063 * 00064 * D (input) REAL array, dimension (N) 00065 * The diagonal of the (symmetric tri-) diagonal matrix S. 00066 * 00067 * E (input) REAL array, dimension (N-1) 00068 * The off-diagonal of the (symmetric tri-) diagonal matrix S. 00069 * E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and 00070 * (3,2) element, etc. 00071 * Not referenced if KS=0. 00072 * 00073 * U (input) COMPLEX array, dimension (LDU, N) 00074 * The unitary matrix in the decomposition, expressed as a 00075 * dense matrix (i.e., not as a product of Householder 00076 * transformations, Givens transformations, etc.) 00077 * 00078 * LDU (input) INTEGER 00079 * The leading dimension of U. LDU must be at least N and 00080 * at least 1. 00081 * 00082 * WORK (workspace) COMPLEX array, dimension (N**2) 00083 * 00084 * RWORK (workspace) REAL array, dimension (N) 00085 * 00086 * RESULT (output) REAL array, dimension (2) 00087 * The values computed by the two tests described above. The 00088 * values are currently limited to 1/ulp, to avoid overflow. 00089 * 00090 * ===================================================================== 00091 * 00092 * .. Parameters .. 00093 COMPLEX CZERO, CONE 00094 PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), 00095 $ CONE = ( 1.0E+0, 0.0E+0 ) ) 00096 REAL ZERO, ONE 00097 PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) 00098 * .. 00099 * .. Local Scalars .. 00100 LOGICAL LOWER 00101 CHARACTER CUPLO 00102 INTEGER IKA, J, JC, JR 00103 REAL ANORM, ULP, UNFL, WNORM 00104 * .. 00105 * .. External Functions .. 00106 LOGICAL LSAME 00107 REAL CLANGE, CLANHB, CLANHP, SLAMCH 00108 EXTERNAL LSAME, CLANGE, CLANHB, CLANHP, SLAMCH 00109 * .. 00110 * .. External Subroutines .. 00111 EXTERNAL CGEMM, CHPR, CHPR2 00112 * .. 00113 * .. Intrinsic Functions .. 00114 INTRINSIC CMPLX, MAX, MIN, REAL 00115 * .. 00116 * .. Executable Statements .. 00117 * 00118 * Constants 00119 * 00120 RESULT( 1 ) = ZERO 00121 RESULT( 2 ) = ZERO 00122 IF( N.LE.0 ) 00123 $ RETURN 00124 * 00125 IKA = MAX( 0, MIN( N-1, KA ) ) 00126 * 00127 IF( LSAME( UPLO, 'U' ) ) THEN 00128 LOWER = .FALSE. 00129 CUPLO = 'U' 00130 ELSE 00131 LOWER = .TRUE. 00132 CUPLO = 'L' 00133 END IF 00134 * 00135 UNFL = SLAMCH( 'Safe minimum' ) 00136 ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' ) 00137 * 00138 * Some Error Checks 00139 * 00140 * Do Test 1 00141 * 00142 * Norm of A: 00143 * 00144 ANORM = MAX( CLANHB( '1', CUPLO, N, IKA, A, LDA, RWORK ), UNFL ) 00145 * 00146 * Compute error matrix: Error = A - U S U* 00147 * 00148 * Copy A from SB to SP storage format. 00149 * 00150 J = 0 00151 DO 50 JC = 1, N 00152 IF( LOWER ) THEN 00153 DO 10 JR = 1, MIN( IKA+1, N+1-JC ) 00154 J = J + 1 00155 WORK( J ) = A( JR, JC ) 00156 10 CONTINUE 00157 DO 20 JR = IKA + 2, N + 1 - JC 00158 J = J + 1 00159 WORK( J ) = ZERO 00160 20 CONTINUE 00161 ELSE 00162 DO 30 JR = IKA + 2, JC 00163 J = J + 1 00164 WORK( J ) = ZERO 00165 30 CONTINUE 00166 DO 40 JR = MIN( IKA, JC-1 ), 0, -1 00167 J = J + 1 00168 WORK( J ) = A( IKA+1-JR, JC ) 00169 40 CONTINUE 00170 END IF 00171 50 CONTINUE 00172 * 00173 DO 60 J = 1, N 00174 CALL CHPR( CUPLO, N, -D( J ), U( 1, J ), 1, WORK ) 00175 60 CONTINUE 00176 * 00177 IF( N.GT.1 .AND. KS.EQ.1 ) THEN 00178 DO 70 J = 1, N - 1 00179 CALL CHPR2( CUPLO, N, -CMPLX( E( J ) ), U( 1, J ), 1, 00180 $ U( 1, J+1 ), 1, WORK ) 00181 70 CONTINUE 00182 END IF 00183 WNORM = CLANHP( '1', CUPLO, N, WORK, RWORK ) 00184 * 00185 IF( ANORM.GT.WNORM ) THEN 00186 RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP ) 00187 ELSE 00188 IF( ANORM.LT.ONE ) THEN 00189 RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP ) 00190 ELSE 00191 RESULT( 1 ) = MIN( WNORM / ANORM, REAL( N ) ) / ( N*ULP ) 00192 END IF 00193 END IF 00194 * 00195 * Do Test 2 00196 * 00197 * Compute UU* - I 00198 * 00199 CALL CGEMM( 'N', 'C', N, N, N, CONE, U, LDU, U, LDU, CZERO, WORK, 00200 $ N ) 00201 * 00202 DO 80 J = 1, N 00203 WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - CONE 00204 80 CONTINUE 00205 * 00206 RESULT( 2 ) = MIN( CLANGE( '1', N, N, WORK, N, RWORK ), 00207 $ REAL( N ) ) / ( N*ULP ) 00208 * 00209 RETURN 00210 * 00211 * End of CHBT21 00212 * 00213 END