LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE CDRVHE( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, 00002 $ A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, 00003 $ NOUT ) 00004 * 00005 * -- LAPACK test routine (version 3.3.1) -- 00006 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 00007 * -- April 2011 -- 00008 * 00009 * .. Scalar Arguments .. 00010 LOGICAL TSTERR 00011 INTEGER NMAX, NN, NOUT, NRHS 00012 REAL THRESH 00013 * .. 00014 * .. Array Arguments .. 00015 LOGICAL DOTYPE( * ) 00016 INTEGER IWORK( * ), NVAL( * ) 00017 REAL RWORK( * ) 00018 COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ), 00019 $ WORK( * ), X( * ), XACT( * ) 00020 * .. 00021 * 00022 * Purpose 00023 * ======= 00024 * 00025 * CDRVHE tests the driver routines CHESV and -SVX. 00026 * 00027 * Arguments 00028 * ========= 00029 * 00030 * DOTYPE (input) LOGICAL array, dimension (NTYPES) 00031 * The matrix types to be used for testing. Matrices of type j 00032 * (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = 00033 * .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. 00034 * 00035 * NN (input) INTEGER 00036 * The number of values of N contained in the vector NVAL. 00037 * 00038 * NVAL (input) INTEGER array, dimension (NN) 00039 * The values of the matrix dimension N. 00040 * 00041 * NRHS (input) INTEGER 00042 * The number of right hand side vectors to be generated for 00043 * each linear system. 00044 * 00045 * THRESH (input) REAL 00046 * The threshold value for the test ratios. A result is 00047 * included in the output file if RESULT >= THRESH. To have 00048 * every test ratio printed, use THRESH = 0. 00049 * 00050 * TSTERR (input) LOGICAL 00051 * Flag that indicates whether error exits are to be tested. 00052 * 00053 * NMAX (input) INTEGER 00054 * The maximum value permitted for N, used in dimensioning the 00055 * work arrays. 00056 * 00057 * A (workspace) COMPLEX array, dimension (NMAX*NMAX) 00058 * 00059 * AFAC (workspace) COMPLEX array, dimension (NMAX*NMAX) 00060 * 00061 * AINV (workspace) COMPLEX array, dimension (NMAX*NMAX) 00062 * 00063 * B (workspace) COMPLEX array, dimension (NMAX*NRHS) 00064 * 00065 * X (workspace) COMPLEX array, dimension (NMAX*NRHS) 00066 * 00067 * XACT (workspace) COMPLEX array, dimension (NMAX*NRHS) 00068 * 00069 * WORK (workspace) COMPLEX array, dimension 00070 * (NMAX*max(2,NRHS)) 00071 * 00072 * RWORK (workspace) REAL array, dimension (NMAX+2*NRHS) 00073 * 00074 * IWORK (workspace) INTEGER array, dimension (NMAX) 00075 * 00076 * NOUT (input) INTEGER 00077 * The unit number for output. 00078 * 00079 * ===================================================================== 00080 * 00081 * .. Parameters .. 00082 REAL ONE, ZERO 00083 PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) 00084 INTEGER NTYPES, NTESTS 00085 PARAMETER ( NTYPES = 10, NTESTS = 6 ) 00086 INTEGER NFACT 00087 PARAMETER ( NFACT = 2 ) 00088 * .. 00089 * .. Local Scalars .. 00090 LOGICAL ZEROT 00091 CHARACTER DIST, FACT, TYPE, UPLO, XTYPE 00092 CHARACTER*3 PATH 00093 INTEGER I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO, 00094 $ IZERO, J, K, K1, KL, KU, LDA, LWORK, MODE, N, 00095 $ NB, NBMIN, NERRS, NFAIL, NIMAT, NRUN, NT 00096 REAL AINVNM, ANORM, CNDNUM, RCOND, RCONDC 00097 * .. 00098 * .. Local Arrays .. 00099 CHARACTER FACTS( NFACT ), UPLOS( 2 ) 00100 INTEGER ISEED( 4 ), ISEEDY( 4 ) 00101 REAL RESULT( NTESTS ) 00102 * .. 00103 * .. External Functions .. 00104 REAL CLANHE, SGET06 00105 EXTERNAL CLANHE, SGET06 00106 * .. 00107 * .. External Subroutines .. 00108 EXTERNAL ALADHD, ALAERH, ALASVM, CERRVX, CGET04, CHESV, 00109 $ CHESVX, CHET01, CHETRF, CHETRI2, CLACPY, 00110 $ CLAIPD, CLARHS, CLASET, CLATB4, CLATMS, CPOT02, 00111 $ CPOT05, XLAENV 00112 * .. 00113 * .. Scalars in Common .. 00114 LOGICAL LERR, OK 00115 CHARACTER*32 SRNAMT 00116 INTEGER INFOT, NUNIT 00117 * .. 00118 * .. Common blocks .. 00119 COMMON / INFOC / INFOT, NUNIT, OK, LERR 00120 COMMON / SRNAMC / SRNAMT 00121 * .. 00122 * .. Intrinsic Functions .. 00123 INTRINSIC CMPLX, MAX, MIN 00124 * .. 00125 * .. Data statements .. 00126 DATA ISEEDY / 1988, 1989, 1990, 1991 / 00127 DATA UPLOS / 'U', 'L' / , FACTS / 'F', 'N' / 00128 * .. 00129 * .. Executable Statements .. 00130 * 00131 * Initialize constants and the random number seed. 00132 * 00133 PATH( 1: 1 ) = 'C' 00134 PATH( 2: 3 ) = 'HE' 00135 NRUN = 0 00136 NFAIL = 0 00137 NERRS = 0 00138 DO 10 I = 1, 4 00139 ISEED( I ) = ISEEDY( I ) 00140 10 CONTINUE 00141 LWORK = MAX( 2*NMAX, NMAX*NRHS ) 00142 * 00143 * Test the error exits 00144 * 00145 IF( TSTERR ) 00146 $ CALL CERRVX( PATH, NOUT ) 00147 INFOT = 0 00148 * 00149 * Set the block size and minimum block size for testing. 00150 * 00151 NB = 1 00152 NBMIN = 2 00153 CALL XLAENV( 1, NB ) 00154 CALL XLAENV( 2, NBMIN ) 00155 * 00156 * Do for each value of N in NVAL 00157 * 00158 DO 180 IN = 1, NN 00159 N = NVAL( IN ) 00160 LDA = MAX( N, 1 ) 00161 XTYPE = 'N' 00162 NIMAT = NTYPES 00163 IF( N.LE.0 ) 00164 $ NIMAT = 1 00165 * 00166 DO 170 IMAT = 1, NIMAT 00167 * 00168 * Do the tests only if DOTYPE( IMAT ) is true. 00169 * 00170 IF( .NOT.DOTYPE( IMAT ) ) 00171 $ GO TO 170 00172 * 00173 * Skip types 3, 4, 5, or 6 if the matrix size is too small. 00174 * 00175 ZEROT = IMAT.GE.3 .AND. IMAT.LE.6 00176 IF( ZEROT .AND. N.LT.IMAT-2 ) 00177 $ GO TO 170 00178 * 00179 * Do first for UPLO = 'U', then for UPLO = 'L' 00180 * 00181 DO 160 IUPLO = 1, 2 00182 UPLO = UPLOS( IUPLO ) 00183 * 00184 * Set up parameters with CLATB4 and generate a test matrix 00185 * with CLATMS. 00186 * 00187 CALL CLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE, 00188 $ CNDNUM, DIST ) 00189 * 00190 SRNAMT = 'CLATMS' 00191 CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, 00192 $ CNDNUM, ANORM, KL, KU, UPLO, A, LDA, WORK, 00193 $ INFO ) 00194 * 00195 * Check error code from CLATMS. 00196 * 00197 IF( INFO.NE.0 ) THEN 00198 CALL ALAERH( PATH, 'CLATMS', INFO, 0, UPLO, N, N, -1, 00199 $ -1, -1, IMAT, NFAIL, NERRS, NOUT ) 00200 GO TO 160 00201 END IF 00202 * 00203 * For types 3-6, zero one or more rows and columns of the 00204 * matrix to test that INFO is returned correctly. 00205 * 00206 IF( ZEROT ) THEN 00207 IF( IMAT.EQ.3 ) THEN 00208 IZERO = 1 00209 ELSE IF( IMAT.EQ.4 ) THEN 00210 IZERO = N 00211 ELSE 00212 IZERO = N / 2 + 1 00213 END IF 00214 * 00215 IF( IMAT.LT.6 ) THEN 00216 * 00217 * Set row and column IZERO to zero. 00218 * 00219 IF( IUPLO.EQ.1 ) THEN 00220 IOFF = ( IZERO-1 )*LDA 00221 DO 20 I = 1, IZERO - 1 00222 A( IOFF+I ) = ZERO 00223 20 CONTINUE 00224 IOFF = IOFF + IZERO 00225 DO 30 I = IZERO, N 00226 A( IOFF ) = ZERO 00227 IOFF = IOFF + LDA 00228 30 CONTINUE 00229 ELSE 00230 IOFF = IZERO 00231 DO 40 I = 1, IZERO - 1 00232 A( IOFF ) = ZERO 00233 IOFF = IOFF + LDA 00234 40 CONTINUE 00235 IOFF = IOFF - IZERO 00236 DO 50 I = IZERO, N 00237 A( IOFF+I ) = ZERO 00238 50 CONTINUE 00239 END IF 00240 ELSE 00241 IOFF = 0 00242 IF( IUPLO.EQ.1 ) THEN 00243 * 00244 * Set the first IZERO rows and columns to zero. 00245 * 00246 DO 70 J = 1, N 00247 I2 = MIN( J, IZERO ) 00248 DO 60 I = 1, I2 00249 A( IOFF+I ) = ZERO 00250 60 CONTINUE 00251 IOFF = IOFF + LDA 00252 70 CONTINUE 00253 ELSE 00254 * 00255 * Set the last IZERO rows and columns to zero. 00256 * 00257 DO 90 J = 1, N 00258 I1 = MAX( J, IZERO ) 00259 DO 80 I = I1, N 00260 A( IOFF+I ) = ZERO 00261 80 CONTINUE 00262 IOFF = IOFF + LDA 00263 90 CONTINUE 00264 END IF 00265 END IF 00266 ELSE 00267 IZERO = 0 00268 END IF 00269 * 00270 * Set the imaginary part of the diagonals. 00271 * 00272 CALL CLAIPD( N, A, LDA+1, 0 ) 00273 * 00274 DO 150 IFACT = 1, NFACT 00275 * 00276 * Do first for FACT = 'F', then for other values. 00277 * 00278 FACT = FACTS( IFACT ) 00279 * 00280 * Compute the condition number for comparison with 00281 * the value returned by CHESVX. 00282 * 00283 IF( ZEROT ) THEN 00284 IF( IFACT.EQ.1 ) 00285 $ GO TO 150 00286 RCONDC = ZERO 00287 * 00288 ELSE IF( IFACT.EQ.1 ) THEN 00289 * 00290 * Compute the 1-norm of A. 00291 * 00292 ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK ) 00293 * 00294 * Factor the matrix A. 00295 * 00296 CALL CLACPY( UPLO, N, N, A, LDA, AFAC, LDA ) 00297 CALL CHETRF( UPLO, N, AFAC, LDA, IWORK, WORK, 00298 $ LWORK, INFO ) 00299 * 00300 * Compute inv(A) and take its norm. 00301 * 00302 CALL CLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA ) 00303 LWORK = (N+NB+1)*(NB+3) 00304 CALL CHETRI2( UPLO, N, AINV, LDA, IWORK, WORK, 00305 $ LWORK, INFO ) 00306 AINVNM = CLANHE( '1', UPLO, N, AINV, LDA, RWORK ) 00307 * 00308 * Compute the 1-norm condition number of A. 00309 * 00310 IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN 00311 RCONDC = ONE 00312 ELSE 00313 RCONDC = ( ONE / ANORM ) / AINVNM 00314 END IF 00315 END IF 00316 * 00317 * Form an exact solution and set the right hand side. 00318 * 00319 SRNAMT = 'CLARHS' 00320 CALL CLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU, 00321 $ NRHS, A, LDA, XACT, LDA, B, LDA, ISEED, 00322 $ INFO ) 00323 XTYPE = 'C' 00324 * 00325 * --- Test CHESV --- 00326 * 00327 IF( IFACT.EQ.2 ) THEN 00328 CALL CLACPY( UPLO, N, N, A, LDA, AFAC, LDA ) 00329 CALL CLACPY( 'Full', N, NRHS, B, LDA, X, LDA ) 00330 * 00331 * Factor the matrix and solve the system using CHESV. 00332 * 00333 SRNAMT = 'CHESV ' 00334 CALL CHESV( UPLO, N, NRHS, AFAC, LDA, IWORK, X, 00335 $ LDA, WORK, LWORK, INFO ) 00336 * 00337 * Adjust the expected value of INFO to account for 00338 * pivoting. 00339 * 00340 K = IZERO 00341 IF( K.GT.0 ) THEN 00342 100 CONTINUE 00343 IF( IWORK( K ).LT.0 ) THEN 00344 IF( IWORK( K ).NE.-K ) THEN 00345 K = -IWORK( K ) 00346 GO TO 100 00347 END IF 00348 ELSE IF( IWORK( K ).NE.K ) THEN 00349 K = IWORK( K ) 00350 GO TO 100 00351 END IF 00352 END IF 00353 * 00354 * Check error code from CHESV . 00355 * 00356 IF( INFO.NE.K ) THEN 00357 CALL ALAERH( PATH, 'CHESV ', INFO, K, UPLO, N, 00358 $ N, -1, -1, NRHS, IMAT, NFAIL, 00359 $ NERRS, NOUT ) 00360 GO TO 120 00361 ELSE IF( INFO.NE.0 ) THEN 00362 GO TO 120 00363 END IF 00364 * 00365 * Reconstruct matrix from factors and compute 00366 * residual. 00367 * 00368 CALL CHET01( UPLO, N, A, LDA, AFAC, LDA, IWORK, 00369 $ AINV, LDA, RWORK, RESULT( 1 ) ) 00370 * 00371 * Compute residual of the computed solution. 00372 * 00373 CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA ) 00374 CALL CPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK, 00375 $ LDA, RWORK, RESULT( 2 ) ) 00376 * 00377 * Check solution from generated exact solution. 00378 * 00379 CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, 00380 $ RESULT( 3 ) ) 00381 NT = 3 00382 * 00383 * Print information about the tests that did not pass 00384 * the threshold. 00385 * 00386 DO 110 K = 1, NT 00387 IF( RESULT( K ).GE.THRESH ) THEN 00388 IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) 00389 $ CALL ALADHD( NOUT, PATH ) 00390 WRITE( NOUT, FMT = 9999 )'CHESV ', UPLO, N, 00391 $ IMAT, K, RESULT( K ) 00392 NFAIL = NFAIL + 1 00393 END IF 00394 110 CONTINUE 00395 NRUN = NRUN + NT 00396 120 CONTINUE 00397 END IF 00398 * 00399 * --- Test CHESVX --- 00400 * 00401 IF( IFACT.EQ.2 ) 00402 $ CALL CLASET( UPLO, N, N, CMPLX( ZERO ), 00403 $ CMPLX( ZERO ), AFAC, LDA ) 00404 CALL CLASET( 'Full', N, NRHS, CMPLX( ZERO ), 00405 $ CMPLX( ZERO ), X, LDA ) 00406 * 00407 * Solve the system and compute the condition number and 00408 * error bounds using CHESVX. 00409 * 00410 SRNAMT = 'CHESVX' 00411 CALL CHESVX( FACT, UPLO, N, NRHS, A, LDA, AFAC, LDA, 00412 $ IWORK, B, LDA, X, LDA, RCOND, RWORK, 00413 $ RWORK( NRHS+1 ), WORK, LWORK, 00414 $ RWORK( 2*NRHS+1 ), INFO ) 00415 * 00416 * Adjust the expected value of INFO to account for 00417 * pivoting. 00418 * 00419 K = IZERO 00420 IF( K.GT.0 ) THEN 00421 130 CONTINUE 00422 IF( IWORK( K ).LT.0 ) THEN 00423 IF( IWORK( K ).NE.-K ) THEN 00424 K = -IWORK( K ) 00425 GO TO 130 00426 END IF 00427 ELSE IF( IWORK( K ).NE.K ) THEN 00428 K = IWORK( K ) 00429 GO TO 130 00430 END IF 00431 END IF 00432 * 00433 * Check the error code from CHESVX. 00434 * 00435 IF( INFO.NE.K ) THEN 00436 CALL ALAERH( PATH, 'CHESVX', INFO, K, FACT // UPLO, 00437 $ N, N, -1, -1, NRHS, IMAT, NFAIL, 00438 $ NERRS, NOUT ) 00439 GO TO 150 00440 END IF 00441 * 00442 IF( INFO.EQ.0 ) THEN 00443 IF( IFACT.GE.2 ) THEN 00444 * 00445 * Reconstruct matrix from factors and compute 00446 * residual. 00447 * 00448 CALL CHET01( UPLO, N, A, LDA, AFAC, LDA, IWORK, 00449 $ AINV, LDA, RWORK( 2*NRHS+1 ), 00450 $ RESULT( 1 ) ) 00451 K1 = 1 00452 ELSE 00453 K1 = 2 00454 END IF 00455 * 00456 * Compute residual of the computed solution. 00457 * 00458 CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA ) 00459 CALL CPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK, 00460 $ LDA, RWORK( 2*NRHS+1 ), RESULT( 2 ) ) 00461 * 00462 * Check solution from generated exact solution. 00463 * 00464 CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, 00465 $ RESULT( 3 ) ) 00466 * 00467 * Check the error bounds from iterative refinement. 00468 * 00469 CALL CPOT05( UPLO, N, NRHS, A, LDA, B, LDA, X, LDA, 00470 $ XACT, LDA, RWORK, RWORK( NRHS+1 ), 00471 $ RESULT( 4 ) ) 00472 ELSE 00473 K1 = 6 00474 END IF 00475 * 00476 * Compare RCOND from CHESVX with the computed value 00477 * in RCONDC. 00478 * 00479 RESULT( 6 ) = SGET06( RCOND, RCONDC ) 00480 * 00481 * Print information about the tests that did not pass 00482 * the threshold. 00483 * 00484 DO 140 K = K1, 6 00485 IF( RESULT( K ).GE.THRESH ) THEN 00486 IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) 00487 $ CALL ALADHD( NOUT, PATH ) 00488 WRITE( NOUT, FMT = 9998 )'CHESVX', FACT, UPLO, 00489 $ N, IMAT, K, RESULT( K ) 00490 NFAIL = NFAIL + 1 00491 END IF 00492 140 CONTINUE 00493 NRUN = NRUN + 7 - K1 00494 * 00495 150 CONTINUE 00496 * 00497 160 CONTINUE 00498 170 CONTINUE 00499 180 CONTINUE 00500 * 00501 * Print a summary of the results. 00502 * 00503 CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS ) 00504 * 00505 9999 FORMAT( 1X, A, ', UPLO=''', A1, ''', N =', I5, ', type ', I2, 00506 $ ', test ', I2, ', ratio =', G12.5 ) 00507 9998 FORMAT( 1X, A, ', FACT=''', A1, ''', UPLO=''', A1, ''', N =', I5, 00508 $ ', type ', I2, ', test ', I2, ', ratio =', G12.5 ) 00509 RETURN 00510 * 00511 * End of CDRVHE 00512 * 00513 END