LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE STRCON( NORM, UPLO, DIAG, N, A, LDA, RCOND, WORK, 00002 $ IWORK, INFO ) 00003 * 00004 * -- LAPACK routine (version 3.2) -- 00005 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00006 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00007 * November 2006 00008 * 00009 * Modified to call SLACN2 in place of SLACON, 7 Feb 03, SJH. 00010 * 00011 * .. Scalar Arguments .. 00012 CHARACTER DIAG, NORM, UPLO 00013 INTEGER INFO, LDA, N 00014 REAL RCOND 00015 * .. 00016 * .. Array Arguments .. 00017 INTEGER IWORK( * ) 00018 REAL A( LDA, * ), WORK( * ) 00019 * .. 00020 * 00021 * Purpose 00022 * ======= 00023 * 00024 * STRCON estimates the reciprocal of the condition number of a 00025 * triangular matrix A, in either the 1-norm or the infinity-norm. 00026 * 00027 * The norm of A is computed and an estimate is obtained for 00028 * norm(inv(A)), then the reciprocal of the condition number is 00029 * computed as 00030 * RCOND = 1 / ( norm(A) * norm(inv(A)) ). 00031 * 00032 * Arguments 00033 * ========= 00034 * 00035 * NORM (input) CHARACTER*1 00036 * Specifies whether the 1-norm condition number or the 00037 * infinity-norm condition number is required: 00038 * = '1' or 'O': 1-norm; 00039 * = 'I': Infinity-norm. 00040 * 00041 * UPLO (input) CHARACTER*1 00042 * = 'U': A is upper triangular; 00043 * = 'L': A is lower triangular. 00044 * 00045 * DIAG (input) CHARACTER*1 00046 * = 'N': A is non-unit triangular; 00047 * = 'U': A is unit triangular. 00048 * 00049 * N (input) INTEGER 00050 * The order of the matrix A. N >= 0. 00051 * 00052 * A (input) REAL array, dimension (LDA,N) 00053 * The triangular matrix A. If UPLO = 'U', the leading N-by-N 00054 * upper triangular part of the array A contains the upper 00055 * triangular matrix, and the strictly lower triangular part of 00056 * A is not referenced. If UPLO = 'L', the leading N-by-N lower 00057 * triangular part of the array A contains the lower triangular 00058 * matrix, and the strictly upper triangular part of A is not 00059 * referenced. If DIAG = 'U', the diagonal elements of A are 00060 * also not referenced and are assumed to be 1. 00061 * 00062 * LDA (input) INTEGER 00063 * The leading dimension of the array A. LDA >= max(1,N). 00064 * 00065 * RCOND (output) REAL 00066 * The reciprocal of the condition number of the matrix A, 00067 * computed as RCOND = 1/(norm(A) * norm(inv(A))). 00068 * 00069 * WORK (workspace) REAL array, dimension (3*N) 00070 * 00071 * IWORK (workspace) INTEGER array, dimension (N) 00072 * 00073 * INFO (output) INTEGER 00074 * = 0: successful exit 00075 * < 0: if INFO = -i, the i-th argument had an illegal value 00076 * 00077 * ===================================================================== 00078 * 00079 * .. Parameters .. 00080 REAL ONE, ZERO 00081 PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) 00082 * .. 00083 * .. Local Scalars .. 00084 LOGICAL NOUNIT, ONENRM, UPPER 00085 CHARACTER NORMIN 00086 INTEGER IX, KASE, KASE1 00087 REAL AINVNM, ANORM, SCALE, SMLNUM, XNORM 00088 * .. 00089 * .. Local Arrays .. 00090 INTEGER ISAVE( 3 ) 00091 * .. 00092 * .. External Functions .. 00093 LOGICAL LSAME 00094 INTEGER ISAMAX 00095 REAL SLAMCH, SLANTR 00096 EXTERNAL LSAME, ISAMAX, SLAMCH, SLANTR 00097 * .. 00098 * .. External Subroutines .. 00099 EXTERNAL SLACN2, SLATRS, SRSCL, XERBLA 00100 * .. 00101 * .. Intrinsic Functions .. 00102 INTRINSIC ABS, MAX, REAL 00103 * .. 00104 * .. Executable Statements .. 00105 * 00106 * Test the input parameters. 00107 * 00108 INFO = 0 00109 UPPER = LSAME( UPLO, 'U' ) 00110 ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' ) 00111 NOUNIT = LSAME( DIAG, 'N' ) 00112 * 00113 IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN 00114 INFO = -1 00115 ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN 00116 INFO = -2 00117 ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN 00118 INFO = -3 00119 ELSE IF( N.LT.0 ) THEN 00120 INFO = -4 00121 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN 00122 INFO = -6 00123 END IF 00124 IF( INFO.NE.0 ) THEN 00125 CALL XERBLA( 'STRCON', -INFO ) 00126 RETURN 00127 END IF 00128 * 00129 * Quick return if possible 00130 * 00131 IF( N.EQ.0 ) THEN 00132 RCOND = ONE 00133 RETURN 00134 END IF 00135 * 00136 RCOND = ZERO 00137 SMLNUM = SLAMCH( 'Safe minimum' )*REAL( MAX( 1, N ) ) 00138 * 00139 * Compute the norm of the triangular matrix A. 00140 * 00141 ANORM = SLANTR( NORM, UPLO, DIAG, N, N, A, LDA, WORK ) 00142 * 00143 * Continue only if ANORM > 0. 00144 * 00145 IF( ANORM.GT.ZERO ) THEN 00146 * 00147 * Estimate the norm of the inverse of A. 00148 * 00149 AINVNM = ZERO 00150 NORMIN = 'N' 00151 IF( ONENRM ) THEN 00152 KASE1 = 1 00153 ELSE 00154 KASE1 = 2 00155 END IF 00156 KASE = 0 00157 10 CONTINUE 00158 CALL SLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE ) 00159 IF( KASE.NE.0 ) THEN 00160 IF( KASE.EQ.KASE1 ) THEN 00161 * 00162 * Multiply by inv(A). 00163 * 00164 CALL SLATRS( UPLO, 'No transpose', DIAG, NORMIN, N, A, 00165 $ LDA, WORK, SCALE, WORK( 2*N+1 ), INFO ) 00166 ELSE 00167 * 00168 * Multiply by inv(A**T). 00169 * 00170 CALL SLATRS( UPLO, 'Transpose', DIAG, NORMIN, N, A, LDA, 00171 $ WORK, SCALE, WORK( 2*N+1 ), INFO ) 00172 END IF 00173 NORMIN = 'Y' 00174 * 00175 * Multiply by 1/SCALE if doing so will not cause overflow. 00176 * 00177 IF( SCALE.NE.ONE ) THEN 00178 IX = ISAMAX( N, WORK, 1 ) 00179 XNORM = ABS( WORK( IX ) ) 00180 IF( SCALE.LT.XNORM*SMLNUM .OR. SCALE.EQ.ZERO ) 00181 $ GO TO 20 00182 CALL SRSCL( N, SCALE, WORK, 1 ) 00183 END IF 00184 GO TO 10 00185 END IF 00186 * 00187 * Compute the estimate of the reciprocal condition number. 00188 * 00189 IF( AINVNM.NE.ZERO ) 00190 $ RCOND = ( ONE / ANORM ) / AINVNM 00191 END IF 00192 * 00193 20 CONTINUE 00194 RETURN 00195 * 00196 * End of STRCON 00197 * 00198 END