LAPACK 3.3.1
Linear Algebra PACKage

clanhb.f

Go to the documentation of this file.
00001       REAL             FUNCTION CLANHB( NORM, UPLO, N, K, AB, LDAB,
00002      $                 WORK )
00003 *
00004 *  -- LAPACK auxiliary routine (version 3.2) --
00005 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00006 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00007 *     November 2006
00008 *
00009 *     .. Scalar Arguments ..
00010       CHARACTER          NORM, UPLO
00011       INTEGER            K, LDAB, N
00012 *     ..
00013 *     .. Array Arguments ..
00014       REAL               WORK( * )
00015       COMPLEX            AB( LDAB, * )
00016 *     ..
00017 *
00018 *  Purpose
00019 *  =======
00020 *
00021 *  CLANHB  returns the value of the one norm,  or the Frobenius norm, or
00022 *  the  infinity norm,  or the element of  largest absolute value  of an
00023 *  n by n hermitian band matrix A,  with k super-diagonals.
00024 *
00025 *  Description
00026 *  ===========
00027 *
00028 *  CLANHB returns the value
00029 *
00030 *     CLANHB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
00031 *              (
00032 *              ( norm1(A),         NORM = '1', 'O' or 'o'
00033 *              (
00034 *              ( normI(A),         NORM = 'I' or 'i'
00035 *              (
00036 *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
00037 *
00038 *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
00039 *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
00040 *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
00041 *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
00042 *
00043 *  Arguments
00044 *  =========
00045 *
00046 *  NORM    (input) CHARACTER*1
00047 *          Specifies the value to be returned in CLANHB as described
00048 *          above.
00049 *
00050 *  UPLO    (input) CHARACTER*1
00051 *          Specifies whether the upper or lower triangular part of the
00052 *          band matrix A is supplied.
00053 *          = 'U':  Upper triangular
00054 *          = 'L':  Lower triangular
00055 *
00056 *  N       (input) INTEGER
00057 *          The order of the matrix A.  N >= 0.  When N = 0, CLANHB is
00058 *          set to zero.
00059 *
00060 *  K       (input) INTEGER
00061 *          The number of super-diagonals or sub-diagonals of the
00062 *          band matrix A.  K >= 0.
00063 *
00064 *  AB      (input) COMPLEX array, dimension (LDAB,N)
00065 *          The upper or lower triangle of the hermitian band matrix A,
00066 *          stored in the first K+1 rows of AB.  The j-th column of A is
00067 *          stored in the j-th column of the array AB as follows:
00068 *          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
00069 *          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).
00070 *          Note that the imaginary parts of the diagonal elements need
00071 *          not be set and are assumed to be zero.
00072 *
00073 *  LDAB    (input) INTEGER
00074 *          The leading dimension of the array AB.  LDAB >= K+1.
00075 *
00076 *  WORK    (workspace) REAL array, dimension (MAX(1,LWORK)),
00077 *          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
00078 *          WORK is not referenced.
00079 *
00080 * =====================================================================
00081 *
00082 *     .. Parameters ..
00083       REAL               ONE, ZERO
00084       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
00085 *     ..
00086 *     .. Local Scalars ..
00087       INTEGER            I, J, L
00088       REAL               ABSA, SCALE, SUM, VALUE
00089 *     ..
00090 *     .. External Functions ..
00091       LOGICAL            LSAME
00092       EXTERNAL           LSAME
00093 *     ..
00094 *     .. External Subroutines ..
00095       EXTERNAL           CLASSQ
00096 *     ..
00097 *     .. Intrinsic Functions ..
00098       INTRINSIC          ABS, MAX, MIN, REAL, SQRT
00099 *     ..
00100 *     .. Executable Statements ..
00101 *
00102       IF( N.EQ.0 ) THEN
00103          VALUE = ZERO
00104       ELSE IF( LSAME( NORM, 'M' ) ) THEN
00105 *
00106 *        Find max(abs(A(i,j))).
00107 *
00108          VALUE = ZERO
00109          IF( LSAME( UPLO, 'U' ) ) THEN
00110             DO 20 J = 1, N
00111                DO 10 I = MAX( K+2-J, 1 ), K
00112                   VALUE = MAX( VALUE, ABS( AB( I, J ) ) )
00113    10          CONTINUE
00114                VALUE = MAX( VALUE, ABS( REAL( AB( K+1, J ) ) ) )
00115    20       CONTINUE
00116          ELSE
00117             DO 40 J = 1, N
00118                VALUE = MAX( VALUE, ABS( REAL( AB( 1, J ) ) ) )
00119                DO 30 I = 2, MIN( N+1-J, K+1 )
00120                   VALUE = MAX( VALUE, ABS( AB( I, J ) ) )
00121    30          CONTINUE
00122    40       CONTINUE
00123          END IF
00124       ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
00125      $         ( NORM.EQ.'1' ) ) THEN
00126 *
00127 *        Find normI(A) ( = norm1(A), since A is hermitian).
00128 *
00129          VALUE = ZERO
00130          IF( LSAME( UPLO, 'U' ) ) THEN
00131             DO 60 J = 1, N
00132                SUM = ZERO
00133                L = K + 1 - J
00134                DO 50 I = MAX( 1, J-K ), J - 1
00135                   ABSA = ABS( AB( L+I, J ) )
00136                   SUM = SUM + ABSA
00137                   WORK( I ) = WORK( I ) + ABSA
00138    50          CONTINUE
00139                WORK( J ) = SUM + ABS( REAL( AB( K+1, J ) ) )
00140    60       CONTINUE
00141             DO 70 I = 1, N
00142                VALUE = MAX( VALUE, WORK( I ) )
00143    70       CONTINUE
00144          ELSE
00145             DO 80 I = 1, N
00146                WORK( I ) = ZERO
00147    80       CONTINUE
00148             DO 100 J = 1, N
00149                SUM = WORK( J ) + ABS( REAL( AB( 1, J ) ) )
00150                L = 1 - J
00151                DO 90 I = J + 1, MIN( N, J+K )
00152                   ABSA = ABS( AB( L+I, J ) )
00153                   SUM = SUM + ABSA
00154                   WORK( I ) = WORK( I ) + ABSA
00155    90          CONTINUE
00156                VALUE = MAX( VALUE, SUM )
00157   100       CONTINUE
00158          END IF
00159       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
00160 *
00161 *        Find normF(A).
00162 *
00163          SCALE = ZERO
00164          SUM = ONE
00165          IF( K.GT.0 ) THEN
00166             IF( LSAME( UPLO, 'U' ) ) THEN
00167                DO 110 J = 2, N
00168                   CALL CLASSQ( MIN( J-1, K ), AB( MAX( K+2-J, 1 ), J ),
00169      $                         1, SCALE, SUM )
00170   110          CONTINUE
00171                L = K + 1
00172             ELSE
00173                DO 120 J = 1, N - 1
00174                   CALL CLASSQ( MIN( N-J, K ), AB( 2, J ), 1, SCALE,
00175      $                         SUM )
00176   120          CONTINUE
00177                L = 1
00178             END IF
00179             SUM = 2*SUM
00180          ELSE
00181             L = 1
00182          END IF
00183          DO 130 J = 1, N
00184             IF( REAL( AB( L, J ) ).NE.ZERO ) THEN
00185                ABSA = ABS( REAL( AB( L, J ) ) )
00186                IF( SCALE.LT.ABSA ) THEN
00187                   SUM = ONE + SUM*( SCALE / ABSA )**2
00188                   SCALE = ABSA
00189                ELSE
00190                   SUM = SUM + ( ABSA / SCALE )**2
00191                END IF
00192             END IF
00193   130    CONTINUE
00194          VALUE = SCALE*SQRT( SUM )
00195       END IF
00196 *
00197       CLANHB = VALUE
00198       RETURN
00199 *
00200 *     End of CLANHB
00201 *
00202       END
 All Files Functions