LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE SPTTRS( N, NRHS, D, E, B, LDB, INFO ) 00002 * 00003 * -- LAPACK routine (version 3.3.1) -- 00004 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00005 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00006 * -- April 2011 -- 00007 * 00008 * .. Scalar Arguments .. 00009 INTEGER INFO, LDB, N, NRHS 00010 * .. 00011 * .. Array Arguments .. 00012 REAL B( LDB, * ), D( * ), E( * ) 00013 * .. 00014 * 00015 * Purpose 00016 * ======= 00017 * 00018 * SPTTRS solves a tridiagonal system of the form 00019 * A * X = B 00020 * using the L*D*L**T factorization of A computed by SPTTRF. D is a 00021 * diagonal matrix specified in the vector D, L is a unit bidiagonal 00022 * matrix whose subdiagonal is specified in the vector E, and X and B 00023 * are N by NRHS matrices. 00024 * 00025 * Arguments 00026 * ========= 00027 * 00028 * N (input) INTEGER 00029 * The order of the tridiagonal matrix A. N >= 0. 00030 * 00031 * NRHS (input) INTEGER 00032 * The number of right hand sides, i.e., the number of columns 00033 * of the matrix B. NRHS >= 0. 00034 * 00035 * D (input) REAL array, dimension (N) 00036 * The n diagonal elements of the diagonal matrix D from the 00037 * L*D*L**T factorization of A. 00038 * 00039 * E (input) REAL array, dimension (N-1) 00040 * The (n-1) subdiagonal elements of the unit bidiagonal factor 00041 * L from the L*D*L**T factorization of A. E can also be regarded 00042 * as the superdiagonal of the unit bidiagonal factor U from the 00043 * factorization A = U**T*D*U. 00044 * 00045 * B (input/output) REAL array, dimension (LDB,NRHS) 00046 * On entry, the right hand side vectors B for the system of 00047 * linear equations. 00048 * On exit, the solution vectors, X. 00049 * 00050 * LDB (input) INTEGER 00051 * The leading dimension of the array B. LDB >= max(1,N). 00052 * 00053 * INFO (output) INTEGER 00054 * = 0: successful exit 00055 * < 0: if INFO = -k, the k-th argument had an illegal value 00056 * 00057 * ===================================================================== 00058 * 00059 * .. Local Scalars .. 00060 INTEGER J, JB, NB 00061 * .. 00062 * .. External Functions .. 00063 INTEGER ILAENV 00064 EXTERNAL ILAENV 00065 * .. 00066 * .. External Subroutines .. 00067 EXTERNAL SPTTS2, XERBLA 00068 * .. 00069 * .. Intrinsic Functions .. 00070 INTRINSIC MAX, MIN 00071 * .. 00072 * .. Executable Statements .. 00073 * 00074 * Test the input arguments. 00075 * 00076 INFO = 0 00077 IF( N.LT.0 ) THEN 00078 INFO = -1 00079 ELSE IF( NRHS.LT.0 ) THEN 00080 INFO = -2 00081 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN 00082 INFO = -6 00083 END IF 00084 IF( INFO.NE.0 ) THEN 00085 CALL XERBLA( 'SPTTRS', -INFO ) 00086 RETURN 00087 END IF 00088 * 00089 * Quick return if possible 00090 * 00091 IF( N.EQ.0 .OR. NRHS.EQ.0 ) 00092 $ RETURN 00093 * 00094 * Determine the number of right-hand sides to solve at a time. 00095 * 00096 IF( NRHS.EQ.1 ) THEN 00097 NB = 1 00098 ELSE 00099 NB = MAX( 1, ILAENV( 1, 'SPTTRS', ' ', N, NRHS, -1, -1 ) ) 00100 END IF 00101 * 00102 IF( NB.GE.NRHS ) THEN 00103 CALL SPTTS2( N, NRHS, D, E, B, LDB ) 00104 ELSE 00105 DO 10 J = 1, NRHS, NB 00106 JB = MIN( NRHS-J+1, NB ) 00107 CALL SPTTS2( N, JB, D, E, B( 1, J ), LDB ) 00108 10 CONTINUE 00109 END IF 00110 * 00111 RETURN 00112 * 00113 * End of SPTTRS 00114 * 00115 END