LAPACK 3.3.1
Linear Algebra PACKage

dlasq2.f

Go to the documentation of this file.
00001       SUBROUTINE DLASQ2( N, Z, INFO )
00002 *
00003 *  -- LAPACK routine (version 3.2)                                    --
00004 *
00005 *  -- Contributed by Osni Marques of the Lawrence Berkeley National   --
00006 *  -- Laboratory and Beresford Parlett of the Univ. of California at  --
00007 *  -- Berkeley                                                        --
00008 *  -- November 2008                                                   --
00009 *
00010 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00011 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00012 *
00013 *     .. Scalar Arguments ..
00014       INTEGER            INFO, N
00015 *     ..
00016 *     .. Array Arguments ..
00017       DOUBLE PRECISION   Z( * )
00018 *     ..
00019 *
00020 *  Purpose
00021 *  =======
00022 *
00023 *  DLASQ2 computes all the eigenvalues of the symmetric positive 
00024 *  definite tridiagonal matrix associated with the qd array Z to high
00025 *  relative accuracy are computed to high relative accuracy, in the
00026 *  absence of denormalization, underflow and overflow.
00027 *
00028 *  To see the relation of Z to the tridiagonal matrix, let L be a
00029 *  unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and
00030 *  let U be an upper bidiagonal matrix with 1's above and diagonal
00031 *  Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the
00032 *  symmetric tridiagonal to which it is similar.
00033 *
00034 *  Note : DLASQ2 defines a logical variable, IEEE, which is true
00035 *  on machines which follow ieee-754 floating-point standard in their
00036 *  handling of infinities and NaNs, and false otherwise. This variable
00037 *  is passed to DLASQ3.
00038 *
00039 *  Arguments
00040 *  =========
00041 *
00042 *  N     (input) INTEGER
00043 *        The number of rows and columns in the matrix. N >= 0.
00044 *
00045 *  Z     (input/output) DOUBLE PRECISION array, dimension ( 4*N )
00046 *        On entry Z holds the qd array. On exit, entries 1 to N hold
00047 *        the eigenvalues in decreasing order, Z( 2*N+1 ) holds the
00048 *        trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If
00049 *        N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 )
00050 *        holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of
00051 *        shifts that failed.
00052 *
00053 *  INFO  (output) INTEGER
00054 *        = 0: successful exit
00055 *        < 0: if the i-th argument is a scalar and had an illegal
00056 *             value, then INFO = -i, if the i-th argument is an
00057 *             array and the j-entry had an illegal value, then
00058 *             INFO = -(i*100+j)
00059 *        > 0: the algorithm failed
00060 *              = 1, a split was marked by a positive value in E
00061 *              = 2, current block of Z not diagonalized after 30*N
00062 *                   iterations (in inner while loop)
00063 *              = 3, termination criterion of outer while loop not met 
00064 *                   (program created more than N unreduced blocks)
00065 *
00066 *  Further Details
00067 *  ===============
00068 *  Local Variables: I0:N0 defines a current unreduced segment of Z.
00069 *  The shifts are accumulated in SIGMA. Iteration count is in ITER.
00070 *  Ping-pong is controlled by PP (alternates between 0 and 1).
00071 *
00072 *  =====================================================================
00073 *
00074 *     .. Parameters ..
00075       DOUBLE PRECISION   CBIAS
00076       PARAMETER          ( CBIAS = 1.50D0 )
00077       DOUBLE PRECISION   ZERO, HALF, ONE, TWO, FOUR, HUNDRD
00078       PARAMETER          ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0,
00079      $                     TWO = 2.0D0, FOUR = 4.0D0, HUNDRD = 100.0D0 )
00080 *     ..
00081 *     .. Local Scalars ..
00082       LOGICAL            IEEE
00083       INTEGER            I0, I4, IINFO, IPN4, ITER, IWHILA, IWHILB, K,
00084      $                   KMIN, N0, NBIG, NDIV, NFAIL, PP, SPLT, TTYPE
00085       DOUBLE PRECISION   D, DEE, DEEMIN, DESIG, DMIN, DMIN1, DMIN2, DN,
00086      $                   DN1, DN2, E, EMAX, EMIN, EPS, G, OLDEMN, QMAX,
00087      $                   QMIN, S, SAFMIN, SIGMA, T, TAU, TEMP, TOL,
00088      $                   TOL2, TRACE, ZMAX
00089 *     ..
00090 *     .. External Subroutines ..
00091       EXTERNAL           DLASQ3, DLASRT, XERBLA
00092 *     ..
00093 *     .. External Functions ..
00094       INTEGER            ILAENV
00095       DOUBLE PRECISION   DLAMCH
00096       EXTERNAL           DLAMCH, ILAENV
00097 *     ..
00098 *     .. Intrinsic Functions ..
00099       INTRINSIC          ABS, DBLE, MAX, MIN, SQRT
00100 *     ..
00101 *     .. Executable Statements ..
00102 *      
00103 *     Test the input arguments.
00104 *     (in case DLASQ2 is not called by DLASQ1)
00105 *
00106       INFO = 0
00107       EPS = DLAMCH( 'Precision' )
00108       SAFMIN = DLAMCH( 'Safe minimum' )
00109       TOL = EPS*HUNDRD
00110       TOL2 = TOL**2
00111 *
00112       IF( N.LT.0 ) THEN
00113          INFO = -1
00114          CALL XERBLA( 'DLASQ2', 1 )
00115          RETURN
00116       ELSE IF( N.EQ.0 ) THEN
00117          RETURN
00118       ELSE IF( N.EQ.1 ) THEN
00119 *
00120 *        1-by-1 case.
00121 *
00122          IF( Z( 1 ).LT.ZERO ) THEN
00123             INFO = -201
00124             CALL XERBLA( 'DLASQ2', 2 )
00125          END IF
00126          RETURN
00127       ELSE IF( N.EQ.2 ) THEN
00128 *
00129 *        2-by-2 case.
00130 *
00131          IF( Z( 2 ).LT.ZERO .OR. Z( 3 ).LT.ZERO ) THEN
00132             INFO = -2
00133             CALL XERBLA( 'DLASQ2', 2 )
00134             RETURN
00135          ELSE IF( Z( 3 ).GT.Z( 1 ) ) THEN
00136             D = Z( 3 )
00137             Z( 3 ) = Z( 1 )
00138             Z( 1 ) = D
00139          END IF
00140          Z( 5 ) = Z( 1 ) + Z( 2 ) + Z( 3 )
00141          IF( Z( 2 ).GT.Z( 3 )*TOL2 ) THEN
00142             T = HALF*( ( Z( 1 )-Z( 3 ) )+Z( 2 ) ) 
00143             S = Z( 3 )*( Z( 2 ) / T )
00144             IF( S.LE.T ) THEN
00145                S = Z( 3 )*( Z( 2 ) / ( T*( ONE+SQRT( ONE+S / T ) ) ) )
00146             ELSE
00147                S = Z( 3 )*( Z( 2 ) / ( T+SQRT( T )*SQRT( T+S ) ) )
00148             END IF
00149             T = Z( 1 ) + ( S+Z( 2 ) )
00150             Z( 3 ) = Z( 3 )*( Z( 1 ) / T )
00151             Z( 1 ) = T
00152          END IF
00153          Z( 2 ) = Z( 3 )
00154          Z( 6 ) = Z( 2 ) + Z( 1 )
00155          RETURN
00156       END IF
00157 *
00158 *     Check for negative data and compute sums of q's and e's.
00159 *
00160       Z( 2*N ) = ZERO
00161       EMIN = Z( 2 )
00162       QMAX = ZERO
00163       ZMAX = ZERO
00164       D = ZERO
00165       E = ZERO
00166 *
00167       DO 10 K = 1, 2*( N-1 ), 2
00168          IF( Z( K ).LT.ZERO ) THEN
00169             INFO = -( 200+K )
00170             CALL XERBLA( 'DLASQ2', 2 )
00171             RETURN
00172          ELSE IF( Z( K+1 ).LT.ZERO ) THEN
00173             INFO = -( 200+K+1 )
00174             CALL XERBLA( 'DLASQ2', 2 )
00175             RETURN
00176          END IF
00177          D = D + Z( K )
00178          E = E + Z( K+1 )
00179          QMAX = MAX( QMAX, Z( K ) )
00180          EMIN = MIN( EMIN, Z( K+1 ) )
00181          ZMAX = MAX( QMAX, ZMAX, Z( K+1 ) )
00182    10 CONTINUE
00183       IF( Z( 2*N-1 ).LT.ZERO ) THEN
00184          INFO = -( 200+2*N-1 )
00185          CALL XERBLA( 'DLASQ2', 2 )
00186          RETURN
00187       END IF
00188       D = D + Z( 2*N-1 )
00189       QMAX = MAX( QMAX, Z( 2*N-1 ) )
00190       ZMAX = MAX( QMAX, ZMAX )
00191 *
00192 *     Check for diagonality.
00193 *
00194       IF( E.EQ.ZERO ) THEN
00195          DO 20 K = 2, N
00196             Z( K ) = Z( 2*K-1 )
00197    20    CONTINUE
00198          CALL DLASRT( 'D', N, Z, IINFO )
00199          Z( 2*N-1 ) = D
00200          RETURN
00201       END IF
00202 *
00203       TRACE = D + E
00204 *
00205 *     Check for zero data.
00206 *
00207       IF( TRACE.EQ.ZERO ) THEN
00208          Z( 2*N-1 ) = ZERO
00209          RETURN
00210       END IF
00211 *         
00212 *     Check whether the machine is IEEE conformable.
00213 *         
00214       IEEE = ILAENV( 10, 'DLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 .AND.
00215      $       ILAENV( 11, 'DLASQ2', 'N', 1, 2, 3, 4 ).EQ.1      
00216 *         
00217 *     Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...).
00218 *
00219       DO 30 K = 2*N, 2, -2
00220          Z( 2*K ) = ZERO 
00221          Z( 2*K-1 ) = Z( K ) 
00222          Z( 2*K-2 ) = ZERO 
00223          Z( 2*K-3 ) = Z( K-1 ) 
00224    30 CONTINUE
00225 *
00226       I0 = 1
00227       N0 = N
00228 *
00229 *     Reverse the qd-array, if warranted.
00230 *
00231       IF( CBIAS*Z( 4*I0-3 ).LT.Z( 4*N0-3 ) ) THEN
00232          IPN4 = 4*( I0+N0 )
00233          DO 40 I4 = 4*I0, 2*( I0+N0-1 ), 4
00234             TEMP = Z( I4-3 )
00235             Z( I4-3 ) = Z( IPN4-I4-3 )
00236             Z( IPN4-I4-3 ) = TEMP
00237             TEMP = Z( I4-1 )
00238             Z( I4-1 ) = Z( IPN4-I4-5 )
00239             Z( IPN4-I4-5 ) = TEMP
00240    40    CONTINUE
00241       END IF
00242 *
00243 *     Initial split checking via dqd and Li's test.
00244 *
00245       PP = 0
00246 *
00247       DO 80 K = 1, 2
00248 *
00249          D = Z( 4*N0+PP-3 )
00250          DO 50 I4 = 4*( N0-1 ) + PP, 4*I0 + PP, -4
00251             IF( Z( I4-1 ).LE.TOL2*D ) THEN
00252                Z( I4-1 ) = -ZERO
00253                D = Z( I4-3 )
00254             ELSE
00255                D = Z( I4-3 )*( D / ( D+Z( I4-1 ) ) )
00256             END IF
00257    50    CONTINUE
00258 *
00259 *        dqd maps Z to ZZ plus Li's test.
00260 *
00261          EMIN = Z( 4*I0+PP+1 )
00262          D = Z( 4*I0+PP-3 )
00263          DO 60 I4 = 4*I0 + PP, 4*( N0-1 ) + PP, 4
00264             Z( I4-2*PP-2 ) = D + Z( I4-1 )
00265             IF( Z( I4-1 ).LE.TOL2*D ) THEN
00266                Z( I4-1 ) = -ZERO
00267                Z( I4-2*PP-2 ) = D
00268                Z( I4-2*PP ) = ZERO
00269                D = Z( I4+1 )
00270             ELSE IF( SAFMIN*Z( I4+1 ).LT.Z( I4-2*PP-2 ) .AND.
00271      $               SAFMIN*Z( I4-2*PP-2 ).LT.Z( I4+1 ) ) THEN
00272                TEMP = Z( I4+1 ) / Z( I4-2*PP-2 )
00273                Z( I4-2*PP ) = Z( I4-1 )*TEMP
00274                D = D*TEMP
00275             ELSE
00276                Z( I4-2*PP ) = Z( I4+1 )*( Z( I4-1 ) / Z( I4-2*PP-2 ) )
00277                D = Z( I4+1 )*( D / Z( I4-2*PP-2 ) )
00278             END IF
00279             EMIN = MIN( EMIN, Z( I4-2*PP ) )
00280    60    CONTINUE 
00281          Z( 4*N0-PP-2 ) = D
00282 *
00283 *        Now find qmax.
00284 *
00285          QMAX = Z( 4*I0-PP-2 )
00286          DO 70 I4 = 4*I0 - PP + 2, 4*N0 - PP - 2, 4
00287             QMAX = MAX( QMAX, Z( I4 ) )
00288    70    CONTINUE
00289 *
00290 *        Prepare for the next iteration on K.
00291 *
00292          PP = 1 - PP
00293    80 CONTINUE
00294 *
00295 *     Initialise variables to pass to DLASQ3.
00296 *
00297       TTYPE = 0
00298       DMIN1 = ZERO
00299       DMIN2 = ZERO
00300       DN    = ZERO
00301       DN1   = ZERO
00302       DN2   = ZERO
00303       G     = ZERO
00304       TAU   = ZERO
00305 *
00306       ITER = 2
00307       NFAIL = 0
00308       NDIV = 2*( N0-I0 )
00309 *
00310       DO 160 IWHILA = 1, N + 1
00311          IF( N0.LT.1 ) 
00312      $      GO TO 170
00313 *
00314 *        While array unfinished do 
00315 *
00316 *        E(N0) holds the value of SIGMA when submatrix in I0:N0
00317 *        splits from the rest of the array, but is negated.
00318 *      
00319          DESIG = ZERO
00320          IF( N0.EQ.N ) THEN
00321             SIGMA = ZERO
00322          ELSE
00323             SIGMA = -Z( 4*N0-1 )
00324          END IF
00325          IF( SIGMA.LT.ZERO ) THEN
00326             INFO = 1
00327             RETURN
00328          END IF
00329 *
00330 *        Find last unreduced submatrix's top index I0, find QMAX and
00331 *        EMIN. Find Gershgorin-type bound if Q's much greater than E's.
00332 *
00333          EMAX = ZERO 
00334          IF( N0.GT.I0 ) THEN
00335             EMIN = ABS( Z( 4*N0-5 ) )
00336          ELSE
00337             EMIN = ZERO
00338          END IF
00339          QMIN = Z( 4*N0-3 )
00340          QMAX = QMIN
00341          DO 90 I4 = 4*N0, 8, -4
00342             IF( Z( I4-5 ).LE.ZERO )
00343      $         GO TO 100
00344             IF( QMIN.GE.FOUR*EMAX ) THEN
00345                QMIN = MIN( QMIN, Z( I4-3 ) )
00346                EMAX = MAX( EMAX, Z( I4-5 ) )
00347             END IF
00348             QMAX = MAX( QMAX, Z( I4-7 )+Z( I4-5 ) )
00349             EMIN = MIN( EMIN, Z( I4-5 ) )
00350    90    CONTINUE
00351          I4 = 4 
00352 *
00353   100    CONTINUE
00354          I0 = I4 / 4
00355          PP = 0
00356 *
00357          IF( N0-I0.GT.1 ) THEN
00358             DEE = Z( 4*I0-3 )
00359             DEEMIN = DEE
00360             KMIN = I0
00361             DO 110 I4 = 4*I0+1, 4*N0-3, 4
00362                DEE = Z( I4 )*( DEE /( DEE+Z( I4-2 ) ) )
00363                IF( DEE.LE.DEEMIN ) THEN
00364                   DEEMIN = DEE
00365                   KMIN = ( I4+3 )/4
00366                END IF
00367   110       CONTINUE
00368             IF( (KMIN-I0)*2.LT.N0-KMIN .AND. 
00369      $         DEEMIN.LE.HALF*Z(4*N0-3) ) THEN
00370                IPN4 = 4*( I0+N0 )
00371                PP = 2
00372                DO 120 I4 = 4*I0, 2*( I0+N0-1 ), 4
00373                   TEMP = Z( I4-3 )
00374                   Z( I4-3 ) = Z( IPN4-I4-3 )
00375                   Z( IPN4-I4-3 ) = TEMP
00376                   TEMP = Z( I4-2 )
00377                   Z( I4-2 ) = Z( IPN4-I4-2 )
00378                   Z( IPN4-I4-2 ) = TEMP
00379                   TEMP = Z( I4-1 )
00380                   Z( I4-1 ) = Z( IPN4-I4-5 )
00381                   Z( IPN4-I4-5 ) = TEMP
00382                   TEMP = Z( I4 )
00383                   Z( I4 ) = Z( IPN4-I4-4 )
00384                   Z( IPN4-I4-4 ) = TEMP
00385   120          CONTINUE
00386             END IF
00387          END IF
00388 *
00389 *        Put -(initial shift) into DMIN.
00390 *
00391          DMIN = -MAX( ZERO, QMIN-TWO*SQRT( QMIN )*SQRT( EMAX ) )
00392 *
00393 *        Now I0:N0 is unreduced. 
00394 *        PP = 0 for ping, PP = 1 for pong.
00395 *        PP = 2 indicates that flipping was applied to the Z array and
00396 *               and that the tests for deflation upon entry in DLASQ3 
00397 *               should not be performed.
00398 *
00399          NBIG = 30*( N0-I0+1 )
00400          DO 140 IWHILB = 1, NBIG
00401             IF( I0.GT.N0 ) 
00402      $         GO TO 150
00403 *
00404 *           While submatrix unfinished take a good dqds step.
00405 *
00406             CALL DLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
00407      $                   ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1,
00408      $                   DN2, G, TAU )
00409 *
00410             PP = 1 - PP
00411 *
00412 *           When EMIN is very small check for splits.
00413 *
00414             IF( PP.EQ.0 .AND. N0-I0.GE.3 ) THEN
00415                IF( Z( 4*N0 ).LE.TOL2*QMAX .OR.
00416      $             Z( 4*N0-1 ).LE.TOL2*SIGMA ) THEN
00417                   SPLT = I0 - 1
00418                   QMAX = Z( 4*I0-3 )
00419                   EMIN = Z( 4*I0-1 )
00420                   OLDEMN = Z( 4*I0 )
00421                   DO 130 I4 = 4*I0, 4*( N0-3 ), 4
00422                      IF( Z( I4 ).LE.TOL2*Z( I4-3 ) .OR.
00423      $                   Z( I4-1 ).LE.TOL2*SIGMA ) THEN
00424                         Z( I4-1 ) = -SIGMA
00425                         SPLT = I4 / 4
00426                         QMAX = ZERO
00427                         EMIN = Z( I4+3 )
00428                         OLDEMN = Z( I4+4 )
00429                      ELSE
00430                         QMAX = MAX( QMAX, Z( I4+1 ) )
00431                         EMIN = MIN( EMIN, Z( I4-1 ) )
00432                         OLDEMN = MIN( OLDEMN, Z( I4 ) )
00433                      END IF
00434   130             CONTINUE
00435                   Z( 4*N0-1 ) = EMIN
00436                   Z( 4*N0 ) = OLDEMN
00437                   I0 = SPLT + 1
00438                END IF
00439             END IF
00440 *
00441   140    CONTINUE
00442 *
00443          INFO = 2
00444          RETURN
00445 *
00446 *        end IWHILB
00447 *
00448   150    CONTINUE
00449 *
00450   160 CONTINUE
00451 *
00452       INFO = 3
00453       RETURN
00454 *
00455 *     end IWHILA   
00456 *
00457   170 CONTINUE
00458 *      
00459 *     Move q's to the front.
00460 *      
00461       DO 180 K = 2, N
00462          Z( K ) = Z( 4*K-3 )
00463   180 CONTINUE
00464 *      
00465 *     Sort and compute sum of eigenvalues.
00466 *
00467       CALL DLASRT( 'D', N, Z, IINFO )
00468 *
00469       E = ZERO
00470       DO 190 K = N, 1, -1
00471          E = E + Z( K )
00472   190 CONTINUE
00473 *
00474 *     Store trace, sum(eigenvalues) and information on performance.
00475 *
00476       Z( 2*N+1 ) = TRACE 
00477       Z( 2*N+2 ) = E
00478       Z( 2*N+3 ) = DBLE( ITER )
00479       Z( 2*N+4 ) = DBLE( NDIV ) / DBLE( N**2 )
00480       Z( 2*N+5 ) = HUNDRD*NFAIL / DBLE( ITER )
00481       RETURN
00482 *
00483 *     End of DLASQ2
00484 *
00485       END
 All Files Functions