LAPACK 3.3.1
Linear Algebra PACKage

zhpev.f

Go to the documentation of this file.
00001       SUBROUTINE ZHPEV( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, RWORK,
00002      $                  INFO )
00003 *
00004 *  -- LAPACK driver routine (version 3.2) --
00005 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00006 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00007 *     November 2006
00008 *
00009 *     .. Scalar Arguments ..
00010       CHARACTER          JOBZ, UPLO
00011       INTEGER            INFO, LDZ, N
00012 *     ..
00013 *     .. Array Arguments ..
00014       DOUBLE PRECISION   RWORK( * ), W( * )
00015       COMPLEX*16         AP( * ), WORK( * ), Z( LDZ, * )
00016 *     ..
00017 *
00018 *  Purpose
00019 *  =======
00020 *
00021 *  ZHPEV computes all the eigenvalues and, optionally, eigenvectors of a
00022 *  complex Hermitian matrix in packed storage.
00023 *
00024 *  Arguments
00025 *  =========
00026 *
00027 *  JOBZ    (input) CHARACTER*1
00028 *          = 'N':  Compute eigenvalues only;
00029 *          = 'V':  Compute eigenvalues and eigenvectors.
00030 *
00031 *  UPLO    (input) CHARACTER*1
00032 *          = 'U':  Upper triangle of A is stored;
00033 *          = 'L':  Lower triangle of A is stored.
00034 *
00035 *  N       (input) INTEGER
00036 *          The order of the matrix A.  N >= 0.
00037 *
00038 *  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
00039 *          On entry, the upper or lower triangle of the Hermitian matrix
00040 *          A, packed columnwise in a linear array.  The j-th column of A
00041 *          is stored in the array AP as follows:
00042 *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
00043 *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
00044 *
00045 *          On exit, AP is overwritten by values generated during the
00046 *          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
00047 *          and first superdiagonal of the tridiagonal matrix T overwrite
00048 *          the corresponding elements of A, and if UPLO = 'L', the
00049 *          diagonal and first subdiagonal of T overwrite the
00050 *          corresponding elements of A.
00051 *
00052 *  W       (output) DOUBLE PRECISION array, dimension (N)
00053 *          If INFO = 0, the eigenvalues in ascending order.
00054 *
00055 *  Z       (output) COMPLEX*16 array, dimension (LDZ, N)
00056 *          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
00057 *          eigenvectors of the matrix A, with the i-th column of Z
00058 *          holding the eigenvector associated with W(i).
00059 *          If JOBZ = 'N', then Z is not referenced.
00060 *
00061 *  LDZ     (input) INTEGER
00062 *          The leading dimension of the array Z.  LDZ >= 1, and if
00063 *          JOBZ = 'V', LDZ >= max(1,N).
00064 *
00065 *  WORK    (workspace) COMPLEX*16 array, dimension (max(1, 2*N-1))
00066 *
00067 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (max(1, 3*N-2))
00068 *
00069 *  INFO    (output) INTEGER
00070 *          = 0:  successful exit.
00071 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
00072 *          > 0:  if INFO = i, the algorithm failed to converge; i
00073 *                off-diagonal elements of an intermediate tridiagonal
00074 *                form did not converge to zero.
00075 *
00076 *  =====================================================================
00077 *
00078 *     .. Parameters ..
00079       DOUBLE PRECISION   ZERO, ONE
00080       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
00081 *     ..
00082 *     .. Local Scalars ..
00083       LOGICAL            WANTZ
00084       INTEGER            IINFO, IMAX, INDE, INDRWK, INDTAU, INDWRK,
00085      $                   ISCALE
00086       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
00087      $                   SMLNUM
00088 *     ..
00089 *     .. External Functions ..
00090       LOGICAL            LSAME
00091       DOUBLE PRECISION   DLAMCH, ZLANHP
00092       EXTERNAL           LSAME, DLAMCH, ZLANHP
00093 *     ..
00094 *     .. External Subroutines ..
00095       EXTERNAL           DSCAL, DSTERF, XERBLA, ZDSCAL, ZHPTRD, ZSTEQR,
00096      $                   ZUPGTR
00097 *     ..
00098 *     .. Intrinsic Functions ..
00099       INTRINSIC          SQRT
00100 *     ..
00101 *     .. Executable Statements ..
00102 *
00103 *     Test the input parameters.
00104 *
00105       WANTZ = LSAME( JOBZ, 'V' )
00106 *
00107       INFO = 0
00108       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
00109          INFO = -1
00110       ELSE IF( .NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) )
00111      $          THEN
00112          INFO = -2
00113       ELSE IF( N.LT.0 ) THEN
00114          INFO = -3
00115       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
00116          INFO = -7
00117       END IF
00118 *
00119       IF( INFO.NE.0 ) THEN
00120          CALL XERBLA( 'ZHPEV ', -INFO )
00121          RETURN
00122       END IF
00123 *
00124 *     Quick return if possible
00125 *
00126       IF( N.EQ.0 )
00127      $   RETURN
00128 *
00129       IF( N.EQ.1 ) THEN
00130          W( 1 ) = AP( 1 )
00131          RWORK( 1 ) = 1
00132          IF( WANTZ )
00133      $      Z( 1, 1 ) = ONE
00134          RETURN
00135       END IF
00136 *
00137 *     Get machine constants.
00138 *
00139       SAFMIN = DLAMCH( 'Safe minimum' )
00140       EPS = DLAMCH( 'Precision' )
00141       SMLNUM = SAFMIN / EPS
00142       BIGNUM = ONE / SMLNUM
00143       RMIN = SQRT( SMLNUM )
00144       RMAX = SQRT( BIGNUM )
00145 *
00146 *     Scale matrix to allowable range, if necessary.
00147 *
00148       ANRM = ZLANHP( 'M', UPLO, N, AP, RWORK )
00149       ISCALE = 0
00150       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
00151          ISCALE = 1
00152          SIGMA = RMIN / ANRM
00153       ELSE IF( ANRM.GT.RMAX ) THEN
00154          ISCALE = 1
00155          SIGMA = RMAX / ANRM
00156       END IF
00157       IF( ISCALE.EQ.1 ) THEN
00158          CALL ZDSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
00159       END IF
00160 *
00161 *     Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form.
00162 *
00163       INDE = 1
00164       INDTAU = 1
00165       CALL ZHPTRD( UPLO, N, AP, W, RWORK( INDE ), WORK( INDTAU ),
00166      $             IINFO )
00167 *
00168 *     For eigenvalues only, call DSTERF.  For eigenvectors, first call
00169 *     ZUPGTR to generate the orthogonal matrix, then call ZSTEQR.
00170 *
00171       IF( .NOT.WANTZ ) THEN
00172          CALL DSTERF( N, W, RWORK( INDE ), INFO )
00173       ELSE
00174          INDWRK = INDTAU + N
00175          CALL ZUPGTR( UPLO, N, AP, WORK( INDTAU ), Z, LDZ,
00176      $                WORK( INDWRK ), IINFO )
00177          INDRWK = INDE + N
00178          CALL ZSTEQR( JOBZ, N, W, RWORK( INDE ), Z, LDZ,
00179      $                RWORK( INDRWK ), INFO )
00180       END IF
00181 *
00182 *     If matrix was scaled, then rescale eigenvalues appropriately.
00183 *
00184       IF( ISCALE.EQ.1 ) THEN
00185          IF( INFO.EQ.0 ) THEN
00186             IMAX = N
00187          ELSE
00188             IMAX = INFO - 1
00189          END IF
00190          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
00191       END IF
00192 *
00193       RETURN
00194 *
00195 *     End of ZHPEV
00196 *
00197       END
 All Files Functions