LAPACK 3.3.1
Linear Algebra PACKage
|
00001 REAL FUNCTION SLANSP( NORM, UPLO, N, AP, WORK ) 00002 * 00003 * -- LAPACK auxiliary routine (version 3.2) -- 00004 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00005 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00006 * November 2006 00007 * 00008 * .. Scalar Arguments .. 00009 CHARACTER NORM, UPLO 00010 INTEGER N 00011 * .. 00012 * .. Array Arguments .. 00013 REAL AP( * ), WORK( * ) 00014 * .. 00015 * 00016 * Purpose 00017 * ======= 00018 * 00019 * SLANSP returns the value of the one norm, or the Frobenius norm, or 00020 * the infinity norm, or the element of largest absolute value of a 00021 * real symmetric matrix A, supplied in packed form. 00022 * 00023 * Description 00024 * =========== 00025 * 00026 * SLANSP returns the value 00027 * 00028 * SLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm' 00029 * ( 00030 * ( norm1(A), NORM = '1', 'O' or 'o' 00031 * ( 00032 * ( normI(A), NORM = 'I' or 'i' 00033 * ( 00034 * ( normF(A), NORM = 'F', 'f', 'E' or 'e' 00035 * 00036 * where norm1 denotes the one norm of a matrix (maximum column sum), 00037 * normI denotes the infinity norm of a matrix (maximum row sum) and 00038 * normF denotes the Frobenius norm of a matrix (square root of sum of 00039 * squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. 00040 * 00041 * Arguments 00042 * ========= 00043 * 00044 * NORM (input) CHARACTER*1 00045 * Specifies the value to be returned in SLANSP as described 00046 * above. 00047 * 00048 * UPLO (input) CHARACTER*1 00049 * Specifies whether the upper or lower triangular part of the 00050 * symmetric matrix A is supplied. 00051 * = 'U': Upper triangular part of A is supplied 00052 * = 'L': Lower triangular part of A is supplied 00053 * 00054 * N (input) INTEGER 00055 * The order of the matrix A. N >= 0. When N = 0, SLANSP is 00056 * set to zero. 00057 * 00058 * AP (input) REAL array, dimension (N*(N+1)/2) 00059 * The upper or lower triangle of the symmetric matrix A, packed 00060 * columnwise in a linear array. The j-th column of A is stored 00061 * in the array AP as follows: 00062 * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; 00063 * if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. 00064 * 00065 * WORK (workspace) REAL array, dimension (MAX(1,LWORK)), 00066 * where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, 00067 * WORK is not referenced. 00068 * 00069 * ===================================================================== 00070 * 00071 * .. Parameters .. 00072 REAL ONE, ZERO 00073 PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) 00074 * .. 00075 * .. Local Scalars .. 00076 INTEGER I, J, K 00077 REAL ABSA, SCALE, SUM, VALUE 00078 * .. 00079 * .. External Subroutines .. 00080 EXTERNAL SLASSQ 00081 * .. 00082 * .. External Functions .. 00083 LOGICAL LSAME 00084 EXTERNAL LSAME 00085 * .. 00086 * .. Intrinsic Functions .. 00087 INTRINSIC ABS, MAX, SQRT 00088 * .. 00089 * .. Executable Statements .. 00090 * 00091 IF( N.EQ.0 ) THEN 00092 VALUE = ZERO 00093 ELSE IF( LSAME( NORM, 'M' ) ) THEN 00094 * 00095 * Find max(abs(A(i,j))). 00096 * 00097 VALUE = ZERO 00098 IF( LSAME( UPLO, 'U' ) ) THEN 00099 K = 1 00100 DO 20 J = 1, N 00101 DO 10 I = K, K + J - 1 00102 VALUE = MAX( VALUE, ABS( AP( I ) ) ) 00103 10 CONTINUE 00104 K = K + J 00105 20 CONTINUE 00106 ELSE 00107 K = 1 00108 DO 40 J = 1, N 00109 DO 30 I = K, K + N - J 00110 VALUE = MAX( VALUE, ABS( AP( I ) ) ) 00111 30 CONTINUE 00112 K = K + N - J + 1 00113 40 CONTINUE 00114 END IF 00115 ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR. 00116 $ ( NORM.EQ.'1' ) ) THEN 00117 * 00118 * Find normI(A) ( = norm1(A), since A is symmetric). 00119 * 00120 VALUE = ZERO 00121 K = 1 00122 IF( LSAME( UPLO, 'U' ) ) THEN 00123 DO 60 J = 1, N 00124 SUM = ZERO 00125 DO 50 I = 1, J - 1 00126 ABSA = ABS( AP( K ) ) 00127 SUM = SUM + ABSA 00128 WORK( I ) = WORK( I ) + ABSA 00129 K = K + 1 00130 50 CONTINUE 00131 WORK( J ) = SUM + ABS( AP( K ) ) 00132 K = K + 1 00133 60 CONTINUE 00134 DO 70 I = 1, N 00135 VALUE = MAX( VALUE, WORK( I ) ) 00136 70 CONTINUE 00137 ELSE 00138 DO 80 I = 1, N 00139 WORK( I ) = ZERO 00140 80 CONTINUE 00141 DO 100 J = 1, N 00142 SUM = WORK( J ) + ABS( AP( K ) ) 00143 K = K + 1 00144 DO 90 I = J + 1, N 00145 ABSA = ABS( AP( K ) ) 00146 SUM = SUM + ABSA 00147 WORK( I ) = WORK( I ) + ABSA 00148 K = K + 1 00149 90 CONTINUE 00150 VALUE = MAX( VALUE, SUM ) 00151 100 CONTINUE 00152 END IF 00153 ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN 00154 * 00155 * Find normF(A). 00156 * 00157 SCALE = ZERO 00158 SUM = ONE 00159 K = 2 00160 IF( LSAME( UPLO, 'U' ) ) THEN 00161 DO 110 J = 2, N 00162 CALL SLASSQ( J-1, AP( K ), 1, SCALE, SUM ) 00163 K = K + J 00164 110 CONTINUE 00165 ELSE 00166 DO 120 J = 1, N - 1 00167 CALL SLASSQ( N-J, AP( K ), 1, SCALE, SUM ) 00168 K = K + N - J + 1 00169 120 CONTINUE 00170 END IF 00171 SUM = 2*SUM 00172 K = 1 00173 DO 130 I = 1, N 00174 IF( AP( K ).NE.ZERO ) THEN 00175 ABSA = ABS( AP( K ) ) 00176 IF( SCALE.LT.ABSA ) THEN 00177 SUM = ONE + SUM*( SCALE / ABSA )**2 00178 SCALE = ABSA 00179 ELSE 00180 SUM = SUM + ( ABSA / SCALE )**2 00181 END IF 00182 END IF 00183 IF( LSAME( UPLO, 'U' ) ) THEN 00184 K = K + I + 1 00185 ELSE 00186 K = K + N - I + 1 00187 END IF 00188 130 CONTINUE 00189 VALUE = SCALE*SQRT( SUM ) 00190 END IF 00191 * 00192 SLANSP = VALUE 00193 RETURN 00194 * 00195 * End of SLANSP 00196 * 00197 END