LAPACK 3.3.1
Linear Algebra PACKage

sgeevx.f

Go to the documentation of this file.
00001       SUBROUTINE SGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, WR, WI,
00002      $                   VL, LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM,
00003      $                   RCONDE, RCONDV, WORK, LWORK, IWORK, INFO )
00004 *
00005 *  -- LAPACK driver routine (version 3.3.1) --
00006 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00007 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00008 *  -- April 2011                                                      --
00009 *
00010 *     .. Scalar Arguments ..
00011       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
00012       INTEGER            IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N
00013       REAL               ABNRM
00014 *     ..
00015 *     .. Array Arguments ..
00016       INTEGER            IWORK( * )
00017       REAL               A( LDA, * ), RCONDE( * ), RCONDV( * ),
00018      $                   SCALE( * ), VL( LDVL, * ), VR( LDVR, * ),
00019      $                   WI( * ), WORK( * ), WR( * )
00020 *     ..
00021 *
00022 *  Purpose
00023 *  =======
00024 *
00025 *  SGEEVX computes for an N-by-N real nonsymmetric matrix A, the
00026 *  eigenvalues and, optionally, the left and/or right eigenvectors.
00027 *
00028 *  Optionally also, it computes a balancing transformation to improve
00029 *  the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
00030 *  SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues
00031 *  (RCONDE), and reciprocal condition numbers for the right
00032 *  eigenvectors (RCONDV).
00033 *
00034 *  The right eigenvector v(j) of A satisfies
00035 *                   A * v(j) = lambda(j) * v(j)
00036 *  where lambda(j) is its eigenvalue.
00037 *  The left eigenvector u(j) of A satisfies
00038 *                u(j)**T * A = lambda(j) * u(j)**T
00039 *  where u(j)**T denotes the transpose of u(j).
00040 *
00041 *  The computed eigenvectors are normalized to have Euclidean norm
00042 *  equal to 1 and largest component real.
00043 *
00044 *  Balancing a matrix means permuting the rows and columns to make it
00045 *  more nearly upper triangular, and applying a diagonal similarity
00046 *  transformation D * A * D**(-1), where D is a diagonal matrix, to
00047 *  make its rows and columns closer in norm and the condition numbers
00048 *  of its eigenvalues and eigenvectors smaller.  The computed
00049 *  reciprocal condition numbers correspond to the balanced matrix.
00050 *  Permuting rows and columns will not change the condition numbers
00051 *  (in exact arithmetic) but diagonal scaling will.  For further
00052 *  explanation of balancing, see section 4.10.2 of the LAPACK
00053 *  Users' Guide.
00054 *
00055 *  Arguments
00056 *  =========
00057 *
00058 *  BALANC  (input) CHARACTER*1
00059 *          Indicates how the input matrix should be diagonally scaled
00060 *          and/or permuted to improve the conditioning of its
00061 *          eigenvalues.
00062 *          = 'N': Do not diagonally scale or permute;
00063 *          = 'P': Perform permutations to make the matrix more nearly
00064 *                 upper triangular. Do not diagonally scale;
00065 *          = 'S': Diagonally scale the matrix, i.e. replace A by
00066 *                 D*A*D**(-1), where D is a diagonal matrix chosen
00067 *                 to make the rows and columns of A more equal in
00068 *                 norm. Do not permute;
00069 *          = 'B': Both diagonally scale and permute A.
00070 *
00071 *          Computed reciprocal condition numbers will be for the matrix
00072 *          after balancing and/or permuting. Permuting does not change
00073 *          condition numbers (in exact arithmetic), but balancing does.
00074 *
00075 *  JOBVL   (input) CHARACTER*1
00076 *          = 'N': left eigenvectors of A are not computed;
00077 *          = 'V': left eigenvectors of A are computed.
00078 *          If SENSE = 'E' or 'B', JOBVL must = 'V'.
00079 *
00080 *  JOBVR   (input) CHARACTER*1
00081 *          = 'N': right eigenvectors of A are not computed;
00082 *          = 'V': right eigenvectors of A are computed.
00083 *          If SENSE = 'E' or 'B', JOBVR must = 'V'.
00084 *
00085 *  SENSE   (input) CHARACTER*1
00086 *          Determines which reciprocal condition numbers are computed.
00087 *          = 'N': None are computed;
00088 *          = 'E': Computed for eigenvalues only;
00089 *          = 'V': Computed for right eigenvectors only;
00090 *          = 'B': Computed for eigenvalues and right eigenvectors.
00091 *
00092 *          If SENSE = 'E' or 'B', both left and right eigenvectors
00093 *          must also be computed (JOBVL = 'V' and JOBVR = 'V').
00094 *
00095 *  N       (input) INTEGER
00096 *          The order of the matrix A. N >= 0.
00097 *
00098 *  A       (input/output) REAL array, dimension (LDA,N)
00099 *          On entry, the N-by-N matrix A.
00100 *          On exit, A has been overwritten.  If JOBVL = 'V' or
00101 *          JOBVR = 'V', A contains the real Schur form of the balanced
00102 *          version of the input matrix A.
00103 *
00104 *  LDA     (input) INTEGER
00105 *          The leading dimension of the array A.  LDA >= max(1,N).
00106 *
00107 *  WR      (output) REAL array, dimension (N)
00108 *  WI      (output) REAL array, dimension (N)
00109 *          WR and WI contain the real and imaginary parts,
00110 *          respectively, of the computed eigenvalues.  Complex
00111 *          conjugate pairs of eigenvalues will appear consecutively
00112 *          with the eigenvalue having the positive imaginary part
00113 *          first.
00114 *
00115 *  VL      (output) REAL array, dimension (LDVL,N)
00116 *          If JOBVL = 'V', the left eigenvectors u(j) are stored one
00117 *          after another in the columns of VL, in the same order
00118 *          as their eigenvalues.
00119 *          If JOBVL = 'N', VL is not referenced.
00120 *          If the j-th eigenvalue is real, then u(j) = VL(:,j),
00121 *          the j-th column of VL.
00122 *          If the j-th and (j+1)-st eigenvalues form a complex
00123 *          conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
00124 *          u(j+1) = VL(:,j) - i*VL(:,j+1).
00125 *
00126 *  LDVL    (input) INTEGER
00127 *          The leading dimension of the array VL.  LDVL >= 1; if
00128 *          JOBVL = 'V', LDVL >= N.
00129 *
00130 *  VR      (output) REAL array, dimension (LDVR,N)
00131 *          If JOBVR = 'V', the right eigenvectors v(j) are stored one
00132 *          after another in the columns of VR, in the same order
00133 *          as their eigenvalues.
00134 *          If JOBVR = 'N', VR is not referenced.
00135 *          If the j-th eigenvalue is real, then v(j) = VR(:,j),
00136 *          the j-th column of VR.
00137 *          If the j-th and (j+1)-st eigenvalues form a complex
00138 *          conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
00139 *          v(j+1) = VR(:,j) - i*VR(:,j+1).
00140 *
00141 *  LDVR    (input) INTEGER
00142 *          The leading dimension of the array VR.  LDVR >= 1, and if
00143 *          JOBVR = 'V', LDVR >= N.
00144 *
00145 *  ILO     (output) INTEGER
00146 *  IHI     (output) INTEGER
00147 *          ILO and IHI are integer values determined when A was
00148 *          balanced.  The balanced A(i,j) = 0 if I > J and 
00149 *          J = 1,...,ILO-1 or I = IHI+1,...,N.
00150 *
00151 *  SCALE   (output) REAL array, dimension (N)
00152 *          Details of the permutations and scaling factors applied
00153 *          when balancing A.  If P(j) is the index of the row and column
00154 *          interchanged with row and column j, and D(j) is the scaling
00155 *          factor applied to row and column j, then
00156 *          SCALE(J) = P(J),    for J = 1,...,ILO-1
00157 *                   = D(J),    for J = ILO,...,IHI
00158 *                   = P(J)     for J = IHI+1,...,N.
00159 *          The order in which the interchanges are made is N to IHI+1,
00160 *          then 1 to ILO-1.
00161 *
00162 *  ABNRM   (output) REAL
00163 *          The one-norm of the balanced matrix (the maximum
00164 *          of the sum of absolute values of elements of any column).
00165 *
00166 *  RCONDE  (output) REAL array, dimension (N)
00167 *          RCONDE(j) is the reciprocal condition number of the j-th
00168 *          eigenvalue.
00169 *
00170 *  RCONDV  (output) REAL array, dimension (N)
00171 *          RCONDV(j) is the reciprocal condition number of the j-th
00172 *          right eigenvector.
00173 *
00174 *  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))
00175 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
00176 *
00177 *  LWORK   (input) INTEGER
00178 *          The dimension of the array WORK.   If SENSE = 'N' or 'E',
00179 *          LWORK >= max(1,2*N), and if JOBVL = 'V' or JOBVR = 'V',
00180 *          LWORK >= 3*N.  If SENSE = 'V' or 'B', LWORK >= N*(N+6).
00181 *          For good performance, LWORK must generally be larger.
00182 *
00183 *          If LWORK = -1, then a workspace query is assumed; the routine
00184 *          only calculates the optimal size of the WORK array, returns
00185 *          this value as the first entry of the WORK array, and no error
00186 *          message related to LWORK is issued by XERBLA.
00187 *
00188 *  IWORK   (workspace) INTEGER array, dimension (2*N-2)
00189 *          If SENSE = 'N' or 'E', not referenced.
00190 *
00191 *  INFO    (output) INTEGER
00192 *          = 0:  successful exit
00193 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
00194 *          > 0:  if INFO = i, the QR algorithm failed to compute all the
00195 *                eigenvalues, and no eigenvectors or condition numbers
00196 *                have been computed; elements 1:ILO-1 and i+1:N of WR
00197 *                and WI contain eigenvalues which have converged.
00198 *
00199 *  =====================================================================
00200 *
00201 *     .. Parameters ..
00202       REAL               ZERO, ONE
00203       PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
00204 *     ..
00205 *     .. Local Scalars ..
00206       LOGICAL            LQUERY, SCALEA, WANTVL, WANTVR, WNTSNB, WNTSNE,
00207      $                   WNTSNN, WNTSNV
00208       CHARACTER          JOB, SIDE
00209       INTEGER            HSWORK, I, ICOND, IERR, ITAU, IWRK, K, MAXWRK,
00210      $                   MINWRK, NOUT
00211       REAL               ANRM, BIGNUM, CS, CSCALE, EPS, R, SCL, SMLNUM,
00212      $                   SN
00213 *     ..
00214 *     .. Local Arrays ..
00215       LOGICAL            SELECT( 1 )
00216       REAL               DUM( 1 )
00217 *     ..
00218 *     .. External Subroutines ..
00219       EXTERNAL           SGEBAK, SGEBAL, SGEHRD, SHSEQR, SLABAD, SLACPY,
00220      $                   SLARTG, SLASCL, SORGHR, SROT, SSCAL, STREVC,
00221      $                   STRSNA, XERBLA
00222 *     ..
00223 *     .. External Functions ..
00224       LOGICAL            LSAME
00225       INTEGER            ILAENV, ISAMAX
00226       REAL               SLAMCH, SLANGE, SLAPY2, SNRM2
00227       EXTERNAL           LSAME, ILAENV, ISAMAX, SLAMCH, SLANGE, SLAPY2,
00228      $                   SNRM2
00229 *     ..
00230 *     .. Intrinsic Functions ..
00231       INTRINSIC          MAX, SQRT
00232 *     ..
00233 *     .. Executable Statements ..
00234 *
00235 *     Test the input arguments
00236 *
00237       INFO = 0
00238       LQUERY = ( LWORK.EQ.-1 )
00239       WANTVL = LSAME( JOBVL, 'V' )
00240       WANTVR = LSAME( JOBVR, 'V' )
00241       WNTSNN = LSAME( SENSE, 'N' )
00242       WNTSNE = LSAME( SENSE, 'E' )
00243       WNTSNV = LSAME( SENSE, 'V' )
00244       WNTSNB = LSAME( SENSE, 'B' )
00245       IF( .NOT.( LSAME( BALANC, 'N' ) .OR. LSAME( BALANC, 'S' ) .OR.
00246      $    LSAME( BALANC, 'P' ) .OR. LSAME( BALANC, 'B' ) ) ) THEN
00247          INFO = -1
00248       ELSE IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
00249          INFO = -2
00250       ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
00251          INFO = -3
00252       ELSE IF( .NOT.( WNTSNN .OR. WNTSNE .OR. WNTSNB .OR. WNTSNV ) .OR.
00253      $         ( ( WNTSNE .OR. WNTSNB ) .AND. .NOT.( WANTVL .AND.
00254      $         WANTVR ) ) ) THEN
00255          INFO = -4
00256       ELSE IF( N.LT.0 ) THEN
00257          INFO = -5
00258       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
00259          INFO = -7
00260       ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
00261          INFO = -11
00262       ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
00263          INFO = -13
00264       END IF
00265 *
00266 *     Compute workspace
00267 *      (Note: Comments in the code beginning "Workspace:" describe the
00268 *       minimal amount of workspace needed at that point in the code,
00269 *       as well as the preferred amount for good performance.
00270 *       NB refers to the optimal block size for the immediately
00271 *       following subroutine, as returned by ILAENV.
00272 *       HSWORK refers to the workspace preferred by SHSEQR, as
00273 *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
00274 *       the worst case.)
00275 *
00276       IF( INFO.EQ.0 ) THEN
00277          IF( N.EQ.0 ) THEN
00278             MINWRK = 1
00279             MAXWRK = 1
00280          ELSE
00281             MAXWRK = N + N*ILAENV( 1, 'SGEHRD', ' ', N, 1, N, 0 )
00282 *
00283             IF( WANTVL ) THEN
00284                CALL SHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VL, LDVL,
00285      $                WORK, -1, INFO )
00286             ELSE IF( WANTVR ) THEN
00287                CALL SHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VR, LDVR,
00288      $                WORK, -1, INFO )
00289             ELSE
00290                IF( WNTSNN ) THEN
00291                   CALL SHSEQR( 'E', 'N', N, 1, N, A, LDA, WR, WI, VR,
00292      $                LDVR, WORK, -1, INFO )
00293                ELSE
00294                   CALL SHSEQR( 'S', 'N', N, 1, N, A, LDA, WR, WI, VR,
00295      $                LDVR, WORK, -1, INFO )
00296                END IF
00297             END IF
00298             HSWORK = WORK( 1 )
00299 *
00300             IF( ( .NOT.WANTVL ) .AND. ( .NOT.WANTVR ) ) THEN
00301                MINWRK = 2*N
00302                IF( .NOT.WNTSNN )
00303      $            MINWRK = MAX( MINWRK, N*N+6*N )
00304                MAXWRK = MAX( MAXWRK, HSWORK )
00305                IF( .NOT.WNTSNN )
00306      $            MAXWRK = MAX( MAXWRK, N*N + 6*N )
00307             ELSE
00308                MINWRK = 3*N
00309                IF( ( .NOT.WNTSNN ) .AND. ( .NOT.WNTSNE ) )
00310      $            MINWRK = MAX( MINWRK, N*N + 6*N )
00311                MAXWRK = MAX( MAXWRK, HSWORK )
00312                MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'SORGHR',
00313      $                       ' ', N, 1, N, -1 ) )
00314                IF( ( .NOT.WNTSNN ) .AND. ( .NOT.WNTSNE ) )
00315      $            MAXWRK = MAX( MAXWRK, N*N + 6*N )
00316                MAXWRK = MAX( MAXWRK, 3*N )
00317             END IF
00318             MAXWRK = MAX( MAXWRK, MINWRK )
00319          END IF
00320          WORK( 1 ) = MAXWRK
00321 *
00322          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
00323             INFO = -21
00324          END IF
00325       END IF
00326 *
00327       IF( INFO.NE.0 ) THEN
00328          CALL XERBLA( 'SGEEVX', -INFO )
00329          RETURN
00330       ELSE IF( LQUERY ) THEN
00331          RETURN
00332       END IF
00333 *
00334 *     Quick return if possible
00335 *
00336       IF( N.EQ.0 )
00337      $   RETURN
00338 *
00339 *     Get machine constants
00340 *
00341       EPS = SLAMCH( 'P' )
00342       SMLNUM = SLAMCH( 'S' )
00343       BIGNUM = ONE / SMLNUM
00344       CALL SLABAD( SMLNUM, BIGNUM )
00345       SMLNUM = SQRT( SMLNUM ) / EPS
00346       BIGNUM = ONE / SMLNUM
00347 *
00348 *     Scale A if max element outside range [SMLNUM,BIGNUM]
00349 *
00350       ICOND = 0
00351       ANRM = SLANGE( 'M', N, N, A, LDA, DUM )
00352       SCALEA = .FALSE.
00353       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
00354          SCALEA = .TRUE.
00355          CSCALE = SMLNUM
00356       ELSE IF( ANRM.GT.BIGNUM ) THEN
00357          SCALEA = .TRUE.
00358          CSCALE = BIGNUM
00359       END IF
00360       IF( SCALEA )
00361      $   CALL SLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
00362 *
00363 *     Balance the matrix and compute ABNRM
00364 *
00365       CALL SGEBAL( BALANC, N, A, LDA, ILO, IHI, SCALE, IERR )
00366       ABNRM = SLANGE( '1', N, N, A, LDA, DUM )
00367       IF( SCALEA ) THEN
00368          DUM( 1 ) = ABNRM
00369          CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
00370          ABNRM = DUM( 1 )
00371       END IF
00372 *
00373 *     Reduce to upper Hessenberg form
00374 *     (Workspace: need 2*N, prefer N+N*NB)
00375 *
00376       ITAU = 1
00377       IWRK = ITAU + N
00378       CALL SGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
00379      $             LWORK-IWRK+1, IERR )
00380 *
00381       IF( WANTVL ) THEN
00382 *
00383 *        Want left eigenvectors
00384 *        Copy Householder vectors to VL
00385 *
00386          SIDE = 'L'
00387          CALL SLACPY( 'L', N, N, A, LDA, VL, LDVL )
00388 *
00389 *        Generate orthogonal matrix in VL
00390 *        (Workspace: need 2*N-1, prefer N+(N-1)*NB)
00391 *
00392          CALL SORGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
00393      $                LWORK-IWRK+1, IERR )
00394 *
00395 *        Perform QR iteration, accumulating Schur vectors in VL
00396 *        (Workspace: need 1, prefer HSWORK (see comments) )
00397 *
00398          IWRK = ITAU
00399          CALL SHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VL, LDVL,
00400      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
00401 *
00402          IF( WANTVR ) THEN
00403 *
00404 *           Want left and right eigenvectors
00405 *           Copy Schur vectors to VR
00406 *
00407             SIDE = 'B'
00408             CALL SLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
00409          END IF
00410 *
00411       ELSE IF( WANTVR ) THEN
00412 *
00413 *        Want right eigenvectors
00414 *        Copy Householder vectors to VR
00415 *
00416          SIDE = 'R'
00417          CALL SLACPY( 'L', N, N, A, LDA, VR, LDVR )
00418 *
00419 *        Generate orthogonal matrix in VR
00420 *        (Workspace: need 2*N-1, prefer N+(N-1)*NB)
00421 *
00422          CALL SORGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
00423      $                LWORK-IWRK+1, IERR )
00424 *
00425 *        Perform QR iteration, accumulating Schur vectors in VR
00426 *        (Workspace: need 1, prefer HSWORK (see comments) )
00427 *
00428          IWRK = ITAU
00429          CALL SHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
00430      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
00431 *
00432       ELSE
00433 *
00434 *        Compute eigenvalues only
00435 *        If condition numbers desired, compute Schur form
00436 *
00437          IF( WNTSNN ) THEN
00438             JOB = 'E'
00439          ELSE
00440             JOB = 'S'
00441          END IF
00442 *
00443 *        (Workspace: need 1, prefer HSWORK (see comments) )
00444 *
00445          IWRK = ITAU
00446          CALL SHSEQR( JOB, 'N', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
00447      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
00448       END IF
00449 *
00450 *     If INFO > 0 from SHSEQR, then quit
00451 *
00452       IF( INFO.GT.0 )
00453      $   GO TO 50
00454 *
00455       IF( WANTVL .OR. WANTVR ) THEN
00456 *
00457 *        Compute left and/or right eigenvectors
00458 *        (Workspace: need 3*N)
00459 *
00460          CALL STREVC( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
00461      $                N, NOUT, WORK( IWRK ), IERR )
00462       END IF
00463 *
00464 *     Compute condition numbers if desired
00465 *     (Workspace: need N*N+6*N unless SENSE = 'E')
00466 *
00467       IF( .NOT.WNTSNN ) THEN
00468          CALL STRSNA( SENSE, 'A', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
00469      $                RCONDE, RCONDV, N, NOUT, WORK( IWRK ), N, IWORK,
00470      $                ICOND )
00471       END IF
00472 *
00473       IF( WANTVL ) THEN
00474 *
00475 *        Undo balancing of left eigenvectors
00476 *
00477          CALL SGEBAK( BALANC, 'L', N, ILO, IHI, SCALE, N, VL, LDVL,
00478      $                IERR )
00479 *
00480 *        Normalize left eigenvectors and make largest component real
00481 *
00482          DO 20 I = 1, N
00483             IF( WI( I ).EQ.ZERO ) THEN
00484                SCL = ONE / SNRM2( N, VL( 1, I ), 1 )
00485                CALL SSCAL( N, SCL, VL( 1, I ), 1 )
00486             ELSE IF( WI( I ).GT.ZERO ) THEN
00487                SCL = ONE / SLAPY2( SNRM2( N, VL( 1, I ), 1 ),
00488      $               SNRM2( N, VL( 1, I+1 ), 1 ) )
00489                CALL SSCAL( N, SCL, VL( 1, I ), 1 )
00490                CALL SSCAL( N, SCL, VL( 1, I+1 ), 1 )
00491                DO 10 K = 1, N
00492                   WORK( K ) = VL( K, I )**2 + VL( K, I+1 )**2
00493    10          CONTINUE
00494                K = ISAMAX( N, WORK, 1 )
00495                CALL SLARTG( VL( K, I ), VL( K, I+1 ), CS, SN, R )
00496                CALL SROT( N, VL( 1, I ), 1, VL( 1, I+1 ), 1, CS, SN )
00497                VL( K, I+1 ) = ZERO
00498             END IF
00499    20    CONTINUE
00500       END IF
00501 *
00502       IF( WANTVR ) THEN
00503 *
00504 *        Undo balancing of right eigenvectors
00505 *
00506          CALL SGEBAK( BALANC, 'R', N, ILO, IHI, SCALE, N, VR, LDVR,
00507      $                IERR )
00508 *
00509 *        Normalize right eigenvectors and make largest component real
00510 *
00511          DO 40 I = 1, N
00512             IF( WI( I ).EQ.ZERO ) THEN
00513                SCL = ONE / SNRM2( N, VR( 1, I ), 1 )
00514                CALL SSCAL( N, SCL, VR( 1, I ), 1 )
00515             ELSE IF( WI( I ).GT.ZERO ) THEN
00516                SCL = ONE / SLAPY2( SNRM2( N, VR( 1, I ), 1 ),
00517      $               SNRM2( N, VR( 1, I+1 ), 1 ) )
00518                CALL SSCAL( N, SCL, VR( 1, I ), 1 )
00519                CALL SSCAL( N, SCL, VR( 1, I+1 ), 1 )
00520                DO 30 K = 1, N
00521                   WORK( K ) = VR( K, I )**2 + VR( K, I+1 )**2
00522    30          CONTINUE
00523                K = ISAMAX( N, WORK, 1 )
00524                CALL SLARTG( VR( K, I ), VR( K, I+1 ), CS, SN, R )
00525                CALL SROT( N, VR( 1, I ), 1, VR( 1, I+1 ), 1, CS, SN )
00526                VR( K, I+1 ) = ZERO
00527             END IF
00528    40    CONTINUE
00529       END IF
00530 *
00531 *     Undo scaling if necessary
00532 *
00533    50 CONTINUE
00534       IF( SCALEA ) THEN
00535          CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WR( INFO+1 ),
00536      $                MAX( N-INFO, 1 ), IERR )
00537          CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WI( INFO+1 ),
00538      $                MAX( N-INFO, 1 ), IERR )
00539          IF( INFO.EQ.0 ) THEN
00540             IF( ( WNTSNV .OR. WNTSNB ) .AND. ICOND.EQ.0 )
00541      $         CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, RCONDV, N,
00542      $                      IERR )
00543          ELSE
00544             CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WR, N,
00545      $                   IERR )
00546             CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
00547      $                   IERR )
00548          END IF
00549       END IF
00550 *
00551       WORK( 1 ) = MAXWRK
00552       RETURN
00553 *
00554 *     End of SGEEVX
00555 *
00556       END
 All Files Functions