LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE ZDRVHP( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, 00002 $ A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, 00003 $ NOUT ) 00004 * 00005 * -- LAPACK test routine (version 3.1) -- 00006 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 00007 * November 2006 00008 * 00009 * .. Scalar Arguments .. 00010 LOGICAL TSTERR 00011 INTEGER NMAX, NN, NOUT, NRHS 00012 DOUBLE PRECISION THRESH 00013 * .. 00014 * .. Array Arguments .. 00015 LOGICAL DOTYPE( * ) 00016 INTEGER IWORK( * ), NVAL( * ) 00017 DOUBLE PRECISION RWORK( * ) 00018 COMPLEX*16 A( * ), AFAC( * ), AINV( * ), B( * ), 00019 $ WORK( * ), X( * ), XACT( * ) 00020 * .. 00021 * 00022 * Purpose 00023 * ======= 00024 * 00025 * ZDRVHP tests the driver routines ZHPSV and -SVX. 00026 * 00027 * Arguments 00028 * ========= 00029 * 00030 * DOTYPE (input) LOGICAL array, dimension (NTYPES) 00031 * The matrix types to be used for testing. Matrices of type j 00032 * (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = 00033 * .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. 00034 * 00035 * NN (input) INTEGER 00036 * The number of values of N contained in the vector NVAL. 00037 * 00038 * NVAL (input) INTEGER array, dimension (NN) 00039 * The values of the matrix dimension N. 00040 * 00041 * NRHS (input) INTEGER 00042 * The number of right hand side vectors to be generated for 00043 * each linear system. 00044 * 00045 * THRESH (input) DOUBLE PRECISION 00046 * The threshold value for the test ratios. A result is 00047 * included in the output file if RESULT >= THRESH. To have 00048 * every test ratio printed, use THRESH = 0. 00049 * 00050 * TSTERR (input) LOGICAL 00051 * Flag that indicates whether error exits are to be tested. 00052 * 00053 * NMAX (input) INTEGER 00054 * The maximum value permitted for N, used in dimensioning the 00055 * work arrays. 00056 * 00057 * A (workspace) COMPLEX*16 array, dimension 00058 * (NMAX*(NMAX+1)/2) 00059 * 00060 * AFAC (workspace) COMPLEX*16 array, dimension 00061 * (NMAX*(NMAX+1)/2) 00062 * 00063 * AINV (workspace) COMPLEX*16 array, dimension 00064 * (NMAX*(NMAX+1)/2) 00065 * 00066 * B (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) 00067 * 00068 * X (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) 00069 * 00070 * XACT (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) 00071 * 00072 * WORK (workspace) COMPLEX*16 array, dimension 00073 * (NMAX*max(2,NRHS)) 00074 * 00075 * RWORK (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS) 00076 * 00077 * IWORK (workspace) INTEGER array, dimension (NMAX) 00078 * 00079 * NOUT (input) INTEGER 00080 * The unit number for output. 00081 * 00082 * ===================================================================== 00083 * 00084 * .. Parameters .. 00085 DOUBLE PRECISION ONE, ZERO 00086 PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) 00087 INTEGER NTYPES, NTESTS 00088 PARAMETER ( NTYPES = 10, NTESTS = 6 ) 00089 INTEGER NFACT 00090 PARAMETER ( NFACT = 2 ) 00091 * .. 00092 * .. Local Scalars .. 00093 LOGICAL ZEROT 00094 CHARACTER DIST, FACT, PACKIT, TYPE, UPLO, XTYPE 00095 CHARACTER*3 PATH 00096 INTEGER I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO, 00097 $ IZERO, J, K, K1, KL, KU, LDA, MODE, N, NB, 00098 $ NBMIN, NERRS, NFAIL, NIMAT, NPP, NRUN, NT 00099 DOUBLE PRECISION AINVNM, ANORM, CNDNUM, RCOND, RCONDC 00100 * .. 00101 * .. Local Arrays .. 00102 CHARACTER FACTS( NFACT ) 00103 INTEGER ISEED( 4 ), ISEEDY( 4 ) 00104 DOUBLE PRECISION RESULT( NTESTS ) 00105 * .. 00106 * .. External Functions .. 00107 DOUBLE PRECISION DGET06, ZLANHP 00108 EXTERNAL DGET06, ZLANHP 00109 * .. 00110 * .. External Subroutines .. 00111 EXTERNAL ALADHD, ALAERH, ALASVM, XLAENV, ZCOPY, ZERRVX, 00112 $ ZGET04, ZHPSV, ZHPSVX, ZHPT01, ZHPTRF, ZHPTRI, 00113 $ ZLACPY, ZLAIPD, ZLARHS, ZLASET, ZLATB4, ZLATMS, 00114 $ ZPPT02, ZPPT05 00115 * .. 00116 * .. Scalars in Common .. 00117 LOGICAL LERR, OK 00118 CHARACTER*32 SRNAMT 00119 INTEGER INFOT, NUNIT 00120 * .. 00121 * .. Common blocks .. 00122 COMMON / INFOC / INFOT, NUNIT, OK, LERR 00123 COMMON / SRNAMC / SRNAMT 00124 * .. 00125 * .. Intrinsic Functions .. 00126 INTRINSIC DCMPLX, MAX, MIN 00127 * .. 00128 * .. Data statements .. 00129 DATA ISEEDY / 1988, 1989, 1990, 1991 / 00130 DATA FACTS / 'F', 'N' / 00131 * .. 00132 * .. Executable Statements .. 00133 * 00134 * Initialize constants and the random number seed. 00135 * 00136 PATH( 1: 1 ) = 'Z' 00137 PATH( 2: 3 ) = 'HP' 00138 NRUN = 0 00139 NFAIL = 0 00140 NERRS = 0 00141 DO 10 I = 1, 4 00142 ISEED( I ) = ISEEDY( I ) 00143 10 CONTINUE 00144 * 00145 * Test the error exits 00146 * 00147 IF( TSTERR ) 00148 $ CALL ZERRVX( PATH, NOUT ) 00149 INFOT = 0 00150 * 00151 * Set the block size and minimum block size for testing. 00152 * 00153 NB = 1 00154 NBMIN = 2 00155 CALL XLAENV( 1, NB ) 00156 CALL XLAENV( 2, NBMIN ) 00157 * 00158 * Do for each value of N in NVAL 00159 * 00160 DO 180 IN = 1, NN 00161 N = NVAL( IN ) 00162 LDA = MAX( N, 1 ) 00163 NPP = N*( N+1 ) / 2 00164 XTYPE = 'N' 00165 NIMAT = NTYPES 00166 IF( N.LE.0 ) 00167 $ NIMAT = 1 00168 * 00169 DO 170 IMAT = 1, NIMAT 00170 * 00171 * Do the tests only if DOTYPE( IMAT ) is true. 00172 * 00173 IF( .NOT.DOTYPE( IMAT ) ) 00174 $ GO TO 170 00175 * 00176 * Skip types 3, 4, 5, or 6 if the matrix size is too small. 00177 * 00178 ZEROT = IMAT.GE.3 .AND. IMAT.LE.6 00179 IF( ZEROT .AND. N.LT.IMAT-2 ) 00180 $ GO TO 170 00181 * 00182 * Do first for UPLO = 'U', then for UPLO = 'L' 00183 * 00184 DO 160 IUPLO = 1, 2 00185 IF( IUPLO.EQ.1 ) THEN 00186 UPLO = 'U' 00187 PACKIT = 'C' 00188 ELSE 00189 UPLO = 'L' 00190 PACKIT = 'R' 00191 END IF 00192 * 00193 * Set up parameters with ZLATB4 and generate a test matrix 00194 * with ZLATMS. 00195 * 00196 CALL ZLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE, 00197 $ CNDNUM, DIST ) 00198 * 00199 SRNAMT = 'ZLATMS' 00200 CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, 00201 $ CNDNUM, ANORM, KL, KU, PACKIT, A, LDA, WORK, 00202 $ INFO ) 00203 * 00204 * Check error code from ZLATMS. 00205 * 00206 IF( INFO.NE.0 ) THEN 00207 CALL ALAERH( PATH, 'ZLATMS', INFO, 0, UPLO, N, N, -1, 00208 $ -1, -1, IMAT, NFAIL, NERRS, NOUT ) 00209 GO TO 160 00210 END IF 00211 * 00212 * For types 3-6, zero one or more rows and columns of the 00213 * matrix to test that INFO is returned correctly. 00214 * 00215 IF( ZEROT ) THEN 00216 IF( IMAT.EQ.3 ) THEN 00217 IZERO = 1 00218 ELSE IF( IMAT.EQ.4 ) THEN 00219 IZERO = N 00220 ELSE 00221 IZERO = N / 2 + 1 00222 END IF 00223 * 00224 IF( IMAT.LT.6 ) THEN 00225 * 00226 * Set row and column IZERO to zero. 00227 * 00228 IF( IUPLO.EQ.1 ) THEN 00229 IOFF = ( IZERO-1 )*IZERO / 2 00230 DO 20 I = 1, IZERO - 1 00231 A( IOFF+I ) = ZERO 00232 20 CONTINUE 00233 IOFF = IOFF + IZERO 00234 DO 30 I = IZERO, N 00235 A( IOFF ) = ZERO 00236 IOFF = IOFF + I 00237 30 CONTINUE 00238 ELSE 00239 IOFF = IZERO 00240 DO 40 I = 1, IZERO - 1 00241 A( IOFF ) = ZERO 00242 IOFF = IOFF + N - I 00243 40 CONTINUE 00244 IOFF = IOFF - IZERO 00245 DO 50 I = IZERO, N 00246 A( IOFF+I ) = ZERO 00247 50 CONTINUE 00248 END IF 00249 ELSE 00250 IOFF = 0 00251 IF( IUPLO.EQ.1 ) THEN 00252 * 00253 * Set the first IZERO rows and columns to zero. 00254 * 00255 DO 70 J = 1, N 00256 I2 = MIN( J, IZERO ) 00257 DO 60 I = 1, I2 00258 A( IOFF+I ) = ZERO 00259 60 CONTINUE 00260 IOFF = IOFF + J 00261 70 CONTINUE 00262 ELSE 00263 * 00264 * Set the last IZERO rows and columns to zero. 00265 * 00266 DO 90 J = 1, N 00267 I1 = MAX( J, IZERO ) 00268 DO 80 I = I1, N 00269 A( IOFF+I ) = ZERO 00270 80 CONTINUE 00271 IOFF = IOFF + N - J 00272 90 CONTINUE 00273 END IF 00274 END IF 00275 ELSE 00276 IZERO = 0 00277 END IF 00278 * 00279 * Set the imaginary part of the diagonals. 00280 * 00281 IF( IUPLO.EQ.1 ) THEN 00282 CALL ZLAIPD( N, A, 2, 1 ) 00283 ELSE 00284 CALL ZLAIPD( N, A, N, -1 ) 00285 END IF 00286 * 00287 DO 150 IFACT = 1, NFACT 00288 * 00289 * Do first for FACT = 'F', then for other values. 00290 * 00291 FACT = FACTS( IFACT ) 00292 * 00293 * Compute the condition number for comparison with 00294 * the value returned by ZHPSVX. 00295 * 00296 IF( ZEROT ) THEN 00297 IF( IFACT.EQ.1 ) 00298 $ GO TO 150 00299 RCONDC = ZERO 00300 * 00301 ELSE IF( IFACT.EQ.1 ) THEN 00302 * 00303 * Compute the 1-norm of A. 00304 * 00305 ANORM = ZLANHP( '1', UPLO, N, A, RWORK ) 00306 * 00307 * Factor the matrix A. 00308 * 00309 CALL ZCOPY( NPP, A, 1, AFAC, 1 ) 00310 CALL ZHPTRF( UPLO, N, AFAC, IWORK, INFO ) 00311 * 00312 * Compute inv(A) and take its norm. 00313 * 00314 CALL ZCOPY( NPP, AFAC, 1, AINV, 1 ) 00315 CALL ZHPTRI( UPLO, N, AINV, IWORK, WORK, INFO ) 00316 AINVNM = ZLANHP( '1', UPLO, N, AINV, RWORK ) 00317 * 00318 * Compute the 1-norm condition number of A. 00319 * 00320 IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN 00321 RCONDC = ONE 00322 ELSE 00323 RCONDC = ( ONE / ANORM ) / AINVNM 00324 END IF 00325 END IF 00326 * 00327 * Form an exact solution and set the right hand side. 00328 * 00329 SRNAMT = 'ZLARHS' 00330 CALL ZLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU, 00331 $ NRHS, A, LDA, XACT, LDA, B, LDA, ISEED, 00332 $ INFO ) 00333 XTYPE = 'C' 00334 * 00335 * --- Test ZHPSV --- 00336 * 00337 IF( IFACT.EQ.2 ) THEN 00338 CALL ZCOPY( NPP, A, 1, AFAC, 1 ) 00339 CALL ZLACPY( 'Full', N, NRHS, B, LDA, X, LDA ) 00340 * 00341 * Factor the matrix and solve the system using ZHPSV. 00342 * 00343 SRNAMT = 'ZHPSV ' 00344 CALL ZHPSV( UPLO, N, NRHS, AFAC, IWORK, X, LDA, 00345 $ INFO ) 00346 * 00347 * Adjust the expected value of INFO to account for 00348 * pivoting. 00349 * 00350 K = IZERO 00351 IF( K.GT.0 ) THEN 00352 100 CONTINUE 00353 IF( IWORK( K ).LT.0 ) THEN 00354 IF( IWORK( K ).NE.-K ) THEN 00355 K = -IWORK( K ) 00356 GO TO 100 00357 END IF 00358 ELSE IF( IWORK( K ).NE.K ) THEN 00359 K = IWORK( K ) 00360 GO TO 100 00361 END IF 00362 END IF 00363 * 00364 * Check error code from ZHPSV . 00365 * 00366 IF( INFO.NE.K ) THEN 00367 CALL ALAERH( PATH, 'ZHPSV ', INFO, K, UPLO, N, 00368 $ N, -1, -1, NRHS, IMAT, NFAIL, 00369 $ NERRS, NOUT ) 00370 GO TO 120 00371 ELSE IF( INFO.NE.0 ) THEN 00372 GO TO 120 00373 END IF 00374 * 00375 * Reconstruct matrix from factors and compute 00376 * residual. 00377 * 00378 CALL ZHPT01( UPLO, N, A, AFAC, IWORK, AINV, LDA, 00379 $ RWORK, RESULT( 1 ) ) 00380 * 00381 * Compute residual of the computed solution. 00382 * 00383 CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA ) 00384 CALL ZPPT02( UPLO, N, NRHS, A, X, LDA, WORK, LDA, 00385 $ RWORK, RESULT( 2 ) ) 00386 * 00387 * Check solution from generated exact solution. 00388 * 00389 CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, 00390 $ RESULT( 3 ) ) 00391 NT = 3 00392 * 00393 * Print information about the tests that did not pass 00394 * the threshold. 00395 * 00396 DO 110 K = 1, NT 00397 IF( RESULT( K ).GE.THRESH ) THEN 00398 IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) 00399 $ CALL ALADHD( NOUT, PATH ) 00400 WRITE( NOUT, FMT = 9999 )'ZHPSV ', UPLO, N, 00401 $ IMAT, K, RESULT( K ) 00402 NFAIL = NFAIL + 1 00403 END IF 00404 110 CONTINUE 00405 NRUN = NRUN + NT 00406 120 CONTINUE 00407 END IF 00408 * 00409 * --- Test ZHPSVX --- 00410 * 00411 IF( IFACT.EQ.2 .AND. NPP.GT.0 ) 00412 $ CALL ZLASET( 'Full', NPP, 1, DCMPLX( ZERO ), 00413 $ DCMPLX( ZERO ), AFAC, NPP ) 00414 CALL ZLASET( 'Full', N, NRHS, DCMPLX( ZERO ), 00415 $ DCMPLX( ZERO ), X, LDA ) 00416 * 00417 * Solve the system and compute the condition number and 00418 * error bounds using ZHPSVX. 00419 * 00420 SRNAMT = 'ZHPSVX' 00421 CALL ZHPSVX( FACT, UPLO, N, NRHS, A, AFAC, IWORK, B, 00422 $ LDA, X, LDA, RCOND, RWORK, 00423 $ RWORK( NRHS+1 ), WORK, RWORK( 2*NRHS+1 ), 00424 $ INFO ) 00425 * 00426 * Adjust the expected value of INFO to account for 00427 * pivoting. 00428 * 00429 K = IZERO 00430 IF( K.GT.0 ) THEN 00431 130 CONTINUE 00432 IF( IWORK( K ).LT.0 ) THEN 00433 IF( IWORK( K ).NE.-K ) THEN 00434 K = -IWORK( K ) 00435 GO TO 130 00436 END IF 00437 ELSE IF( IWORK( K ).NE.K ) THEN 00438 K = IWORK( K ) 00439 GO TO 130 00440 END IF 00441 END IF 00442 * 00443 * Check the error code from ZHPSVX. 00444 * 00445 IF( INFO.NE.K ) THEN 00446 CALL ALAERH( PATH, 'ZHPSVX', INFO, K, FACT // UPLO, 00447 $ N, N, -1, -1, NRHS, IMAT, NFAIL, 00448 $ NERRS, NOUT ) 00449 GO TO 150 00450 END IF 00451 * 00452 IF( INFO.EQ.0 ) THEN 00453 IF( IFACT.GE.2 ) THEN 00454 * 00455 * Reconstruct matrix from factors and compute 00456 * residual. 00457 * 00458 CALL ZHPT01( UPLO, N, A, AFAC, IWORK, AINV, LDA, 00459 $ RWORK( 2*NRHS+1 ), RESULT( 1 ) ) 00460 K1 = 1 00461 ELSE 00462 K1 = 2 00463 END IF 00464 * 00465 * Compute residual of the computed solution. 00466 * 00467 CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA ) 00468 CALL ZPPT02( UPLO, N, NRHS, A, X, LDA, WORK, LDA, 00469 $ RWORK( 2*NRHS+1 ), RESULT( 2 ) ) 00470 * 00471 * Check solution from generated exact solution. 00472 * 00473 CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, 00474 $ RESULT( 3 ) ) 00475 * 00476 * Check the error bounds from iterative refinement. 00477 * 00478 CALL ZPPT05( UPLO, N, NRHS, A, B, LDA, X, LDA, 00479 $ XACT, LDA, RWORK, RWORK( NRHS+1 ), 00480 $ RESULT( 4 ) ) 00481 ELSE 00482 K1 = 6 00483 END IF 00484 * 00485 * Compare RCOND from ZHPSVX with the computed value 00486 * in RCONDC. 00487 * 00488 RESULT( 6 ) = DGET06( RCOND, RCONDC ) 00489 * 00490 * Print information about the tests that did not pass 00491 * the threshold. 00492 * 00493 DO 140 K = K1, 6 00494 IF( RESULT( K ).GE.THRESH ) THEN 00495 IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) 00496 $ CALL ALADHD( NOUT, PATH ) 00497 WRITE( NOUT, FMT = 9998 )'ZHPSVX', FACT, UPLO, 00498 $ N, IMAT, K, RESULT( K ) 00499 NFAIL = NFAIL + 1 00500 END IF 00501 140 CONTINUE 00502 NRUN = NRUN + 7 - K1 00503 * 00504 150 CONTINUE 00505 * 00506 160 CONTINUE 00507 170 CONTINUE 00508 180 CONTINUE 00509 * 00510 * Print a summary of the results. 00511 * 00512 CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS ) 00513 * 00514 9999 FORMAT( 1X, A, ', UPLO=''', A1, ''', N =', I5, ', type ', I2, 00515 $ ', test ', I2, ', ratio =', G12.5 ) 00516 9998 FORMAT( 1X, A, ', FACT=''', A1, ''', UPLO=''', A1, ''', N =', I5, 00517 $ ', type ', I2, ', test ', I2, ', ratio =', G12.5 ) 00518 RETURN 00519 * 00520 * End of ZDRVHP 00521 * 00522 END