LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE STFTTR( TRANSR, UPLO, N, ARF, A, LDA, INFO ) 00002 * 00003 * -- LAPACK routine (version 3.3.1) -- 00004 * 00005 * -- Contributed by Fred Gustavson of the IBM Watson Research Center -- 00006 * -- April 2011 -- 00007 * 00008 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00009 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00010 * 00011 * .. Scalar Arguments .. 00012 CHARACTER TRANSR, UPLO 00013 INTEGER INFO, N, LDA 00014 * .. 00015 * .. Array Arguments .. 00016 REAL A( 0: LDA-1, 0: * ), ARF( 0: * ) 00017 * .. 00018 * 00019 * Purpose 00020 * ======= 00021 * 00022 * STFTTR copies a triangular matrix A from rectangular full packed 00023 * format (TF) to standard full format (TR). 00024 * 00025 * Arguments 00026 * ========= 00027 * 00028 * TRANSR (input) CHARACTER*1 00029 * = 'N': ARF is in Normal format; 00030 * = 'T': ARF is in Transpose format. 00031 * 00032 * UPLO (input) CHARACTER*1 00033 * = 'U': A is upper triangular; 00034 * = 'L': A is lower triangular. 00035 * 00036 * N (input) INTEGER 00037 * The order of the matrices ARF and A. N >= 0. 00038 * 00039 * ARF (input) REAL array, dimension (N*(N+1)/2). 00040 * On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L') 00041 * matrix A in RFP format. See the "Notes" below for more 00042 * details. 00043 * 00044 * A (output) REAL array, dimension (LDA,N) 00045 * On exit, the triangular matrix A. If UPLO = 'U', the 00046 * leading N-by-N upper triangular part of the array A contains 00047 * the upper triangular matrix, and the strictly lower 00048 * triangular part of A is not referenced. If UPLO = 'L', the 00049 * leading N-by-N lower triangular part of the array A contains 00050 * the lower triangular matrix, and the strictly upper 00051 * triangular part of A is not referenced. 00052 * 00053 * LDA (input) INTEGER 00054 * The leading dimension of the array A. LDA >= max(1,N). 00055 * 00056 * INFO (output) INTEGER 00057 * = 0: successful exit 00058 * < 0: if INFO = -i, the i-th argument had an illegal value 00059 * 00060 * Further Details 00061 * =============== 00062 * 00063 * We first consider Rectangular Full Packed (RFP) Format when N is 00064 * even. We give an example where N = 6. 00065 * 00066 * AP is Upper AP is Lower 00067 * 00068 * 00 01 02 03 04 05 00 00069 * 11 12 13 14 15 10 11 00070 * 22 23 24 25 20 21 22 00071 * 33 34 35 30 31 32 33 00072 * 44 45 40 41 42 43 44 00073 * 55 50 51 52 53 54 55 00074 * 00075 * 00076 * Let TRANSR = 'N'. RFP holds AP as follows: 00077 * For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last 00078 * three columns of AP upper. The lower triangle A(4:6,0:2) consists of 00079 * the transpose of the first three columns of AP upper. 00080 * For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first 00081 * three columns of AP lower. The upper triangle A(0:2,0:2) consists of 00082 * the transpose of the last three columns of AP lower. 00083 * This covers the case N even and TRANSR = 'N'. 00084 * 00085 * RFP A RFP A 00086 * 00087 * 03 04 05 33 43 53 00088 * 13 14 15 00 44 54 00089 * 23 24 25 10 11 55 00090 * 33 34 35 20 21 22 00091 * 00 44 45 30 31 32 00092 * 01 11 55 40 41 42 00093 * 02 12 22 50 51 52 00094 * 00095 * Now let TRANSR = 'T'. RFP A in both UPLO cases is just the 00096 * transpose of RFP A above. One therefore gets: 00097 * 00098 * 00099 * RFP A RFP A 00100 * 00101 * 03 13 23 33 00 01 02 33 00 10 20 30 40 50 00102 * 04 14 24 34 44 11 12 43 44 11 21 31 41 51 00103 * 05 15 25 35 45 55 22 53 54 55 22 32 42 52 00104 * 00105 * 00106 * We then consider Rectangular Full Packed (RFP) Format when N is 00107 * odd. We give an example where N = 5. 00108 * 00109 * AP is Upper AP is Lower 00110 * 00111 * 00 01 02 03 04 00 00112 * 11 12 13 14 10 11 00113 * 22 23 24 20 21 22 00114 * 33 34 30 31 32 33 00115 * 44 40 41 42 43 44 00116 * 00117 * 00118 * Let TRANSR = 'N'. RFP holds AP as follows: 00119 * For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last 00120 * three columns of AP upper. The lower triangle A(3:4,0:1) consists of 00121 * the transpose of the first two columns of AP upper. 00122 * For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first 00123 * three columns of AP lower. The upper triangle A(0:1,1:2) consists of 00124 * the transpose of the last two columns of AP lower. 00125 * This covers the case N odd and TRANSR = 'N'. 00126 * 00127 * RFP A RFP A 00128 * 00129 * 02 03 04 00 33 43 00130 * 12 13 14 10 11 44 00131 * 22 23 24 20 21 22 00132 * 00 33 34 30 31 32 00133 * 01 11 44 40 41 42 00134 * 00135 * Now let TRANSR = 'T'. RFP A in both UPLO cases is just the 00136 * transpose of RFP A above. One therefore gets: 00137 * 00138 * RFP A RFP A 00139 * 00140 * 02 12 22 00 01 00 10 20 30 40 50 00141 * 03 13 23 33 11 33 11 21 31 41 51 00142 * 04 14 24 34 44 43 44 22 32 42 52 00143 * 00144 * Reference 00145 * ========= 00146 * 00147 * ===================================================================== 00148 * 00149 * .. 00150 * .. Local Scalars .. 00151 LOGICAL LOWER, NISODD, NORMALTRANSR 00152 INTEGER N1, N2, K, NT, NX2, NP1X2 00153 INTEGER I, J, L, IJ 00154 * .. 00155 * .. External Functions .. 00156 LOGICAL LSAME 00157 EXTERNAL LSAME 00158 * .. 00159 * .. External Subroutines .. 00160 EXTERNAL XERBLA 00161 * .. 00162 * .. Intrinsic Functions .. 00163 INTRINSIC MAX, MOD 00164 * .. 00165 * .. Executable Statements .. 00166 * 00167 * Test the input parameters. 00168 * 00169 INFO = 0 00170 NORMALTRANSR = LSAME( TRANSR, 'N' ) 00171 LOWER = LSAME( UPLO, 'L' ) 00172 IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN 00173 INFO = -1 00174 ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN 00175 INFO = -2 00176 ELSE IF( N.LT.0 ) THEN 00177 INFO = -3 00178 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN 00179 INFO = -6 00180 END IF 00181 IF( INFO.NE.0 ) THEN 00182 CALL XERBLA( 'STFTTR', -INFO ) 00183 RETURN 00184 END IF 00185 * 00186 * Quick return if possible 00187 * 00188 IF( N.LE.1 ) THEN 00189 IF( N.EQ.1 ) THEN 00190 A( 0, 0 ) = ARF( 0 ) 00191 END IF 00192 RETURN 00193 END IF 00194 * 00195 * Size of array ARF(0:nt-1) 00196 * 00197 NT = N*( N+1 ) / 2 00198 * 00199 * set N1 and N2 depending on LOWER: for N even N1=N2=K 00200 * 00201 IF( LOWER ) THEN 00202 N2 = N / 2 00203 N1 = N - N2 00204 ELSE 00205 N1 = N / 2 00206 N2 = N - N1 00207 END IF 00208 * 00209 * If N is odd, set NISODD = .TRUE., LDA=N+1 and A is (N+1)--by--K2. 00210 * If N is even, set K = N/2 and NISODD = .FALSE., LDA=N and A is 00211 * N--by--(N+1)/2. 00212 * 00213 IF( MOD( N, 2 ).EQ.0 ) THEN 00214 K = N / 2 00215 NISODD = .FALSE. 00216 IF( .NOT.LOWER ) 00217 $ NP1X2 = N + N + 2 00218 ELSE 00219 NISODD = .TRUE. 00220 IF( .NOT.LOWER ) 00221 $ NX2 = N + N 00222 END IF 00223 * 00224 IF( NISODD ) THEN 00225 * 00226 * N is odd 00227 * 00228 IF( NORMALTRANSR ) THEN 00229 * 00230 * N is odd and TRANSR = 'N' 00231 * 00232 IF( LOWER ) THEN 00233 * 00234 * N is odd, TRANSR = 'N', and UPLO = 'L' 00235 * 00236 IJ = 0 00237 DO J = 0, N2 00238 DO I = N1, N2 + J 00239 A( N2+J, I ) = ARF( IJ ) 00240 IJ = IJ + 1 00241 END DO 00242 DO I = J, N - 1 00243 A( I, J ) = ARF( IJ ) 00244 IJ = IJ + 1 00245 END DO 00246 END DO 00247 * 00248 ELSE 00249 * 00250 * N is odd, TRANSR = 'N', and UPLO = 'U' 00251 * 00252 IJ = NT - N 00253 DO J = N - 1, N1, -1 00254 DO I = 0, J 00255 A( I, J ) = ARF( IJ ) 00256 IJ = IJ + 1 00257 END DO 00258 DO L = J - N1, N1 - 1 00259 A( J-N1, L ) = ARF( IJ ) 00260 IJ = IJ + 1 00261 END DO 00262 IJ = IJ - NX2 00263 END DO 00264 * 00265 END IF 00266 * 00267 ELSE 00268 * 00269 * N is odd and TRANSR = 'T' 00270 * 00271 IF( LOWER ) THEN 00272 * 00273 * N is odd, TRANSR = 'T', and UPLO = 'L' 00274 * 00275 IJ = 0 00276 DO J = 0, N2 - 1 00277 DO I = 0, J 00278 A( J, I ) = ARF( IJ ) 00279 IJ = IJ + 1 00280 END DO 00281 DO I = N1 + J, N - 1 00282 A( I, N1+J ) = ARF( IJ ) 00283 IJ = IJ + 1 00284 END DO 00285 END DO 00286 DO J = N2, N - 1 00287 DO I = 0, N1 - 1 00288 A( J, I ) = ARF( IJ ) 00289 IJ = IJ + 1 00290 END DO 00291 END DO 00292 * 00293 ELSE 00294 * 00295 * N is odd, TRANSR = 'T', and UPLO = 'U' 00296 * 00297 IJ = 0 00298 DO J = 0, N1 00299 DO I = N1, N - 1 00300 A( J, I ) = ARF( IJ ) 00301 IJ = IJ + 1 00302 END DO 00303 END DO 00304 DO J = 0, N1 - 1 00305 DO I = 0, J 00306 A( I, J ) = ARF( IJ ) 00307 IJ = IJ + 1 00308 END DO 00309 DO L = N2 + J, N - 1 00310 A( N2+J, L ) = ARF( IJ ) 00311 IJ = IJ + 1 00312 END DO 00313 END DO 00314 * 00315 END IF 00316 * 00317 END IF 00318 * 00319 ELSE 00320 * 00321 * N is even 00322 * 00323 IF( NORMALTRANSR ) THEN 00324 * 00325 * N is even and TRANSR = 'N' 00326 * 00327 IF( LOWER ) THEN 00328 * 00329 * N is even, TRANSR = 'N', and UPLO = 'L' 00330 * 00331 IJ = 0 00332 DO J = 0, K - 1 00333 DO I = K, K + J 00334 A( K+J, I ) = ARF( IJ ) 00335 IJ = IJ + 1 00336 END DO 00337 DO I = J, N - 1 00338 A( I, J ) = ARF( IJ ) 00339 IJ = IJ + 1 00340 END DO 00341 END DO 00342 * 00343 ELSE 00344 * 00345 * N is even, TRANSR = 'N', and UPLO = 'U' 00346 * 00347 IJ = NT - N - 1 00348 DO J = N - 1, K, -1 00349 DO I = 0, J 00350 A( I, J ) = ARF( IJ ) 00351 IJ = IJ + 1 00352 END DO 00353 DO L = J - K, K - 1 00354 A( J-K, L ) = ARF( IJ ) 00355 IJ = IJ + 1 00356 END DO 00357 IJ = IJ - NP1X2 00358 END DO 00359 * 00360 END IF 00361 * 00362 ELSE 00363 * 00364 * N is even and TRANSR = 'T' 00365 * 00366 IF( LOWER ) THEN 00367 * 00368 * N is even, TRANSR = 'T', and UPLO = 'L' 00369 * 00370 IJ = 0 00371 J = K 00372 DO I = K, N - 1 00373 A( I, J ) = ARF( IJ ) 00374 IJ = IJ + 1 00375 END DO 00376 DO J = 0, K - 2 00377 DO I = 0, J 00378 A( J, I ) = ARF( IJ ) 00379 IJ = IJ + 1 00380 END DO 00381 DO I = K + 1 + J, N - 1 00382 A( I, K+1+J ) = ARF( IJ ) 00383 IJ = IJ + 1 00384 END DO 00385 END DO 00386 DO J = K - 1, N - 1 00387 DO I = 0, K - 1 00388 A( J, I ) = ARF( IJ ) 00389 IJ = IJ + 1 00390 END DO 00391 END DO 00392 * 00393 ELSE 00394 * 00395 * N is even, TRANSR = 'T', and UPLO = 'U' 00396 * 00397 IJ = 0 00398 DO J = 0, K 00399 DO I = K, N - 1 00400 A( J, I ) = ARF( IJ ) 00401 IJ = IJ + 1 00402 END DO 00403 END DO 00404 DO J = 0, K - 2 00405 DO I = 0, J 00406 A( I, J ) = ARF( IJ ) 00407 IJ = IJ + 1 00408 END DO 00409 DO L = K + 1 + J, N - 1 00410 A( K+1+J, L ) = ARF( IJ ) 00411 IJ = IJ + 1 00412 END DO 00413 END DO 00414 * Note that here, on exit of the loop, J = K-1 00415 DO I = 0, J 00416 A( I, J ) = ARF( IJ ) 00417 IJ = IJ + 1 00418 END DO 00419 * 00420 END IF 00421 * 00422 END IF 00423 * 00424 END IF 00425 * 00426 RETURN 00427 * 00428 * End of STFTTR 00429 * 00430 END