LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE DTBT03( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, 00002 $ SCALE, CNORM, TSCAL, X, LDX, B, LDB, WORK, 00003 $ RESID ) 00004 * 00005 * -- LAPACK test routine (version 3.1) -- 00006 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 00007 * November 2006 00008 * 00009 * .. Scalar Arguments .. 00010 CHARACTER DIAG, TRANS, UPLO 00011 INTEGER KD, LDAB, LDB, LDX, N, NRHS 00012 DOUBLE PRECISION RESID, SCALE, TSCAL 00013 * .. 00014 * .. Array Arguments .. 00015 DOUBLE PRECISION AB( LDAB, * ), B( LDB, * ), CNORM( * ), 00016 $ WORK( * ), X( LDX, * ) 00017 * .. 00018 * 00019 * Purpose 00020 * ======= 00021 * 00022 * DTBT03 computes the residual for the solution to a scaled triangular 00023 * system of equations A*x = s*b or A'*x = s*b when A is a 00024 * triangular band matrix. Here A' is the transpose of A, s is a scalar, 00025 * and x and b are N by NRHS matrices. The test ratio is the maximum 00026 * over the number of right hand sides of 00027 * norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), 00028 * where op(A) denotes A or A' and EPS is the machine epsilon. 00029 * 00030 * Arguments 00031 * ========= 00032 * 00033 * UPLO (input) CHARACTER*1 00034 * Specifies whether the matrix A is upper or lower triangular. 00035 * = 'U': Upper triangular 00036 * = 'L': Lower triangular 00037 * 00038 * TRANS (input) CHARACTER*1 00039 * Specifies the operation applied to A. 00040 * = 'N': A *x = b (No transpose) 00041 * = 'T': A'*x = b (Transpose) 00042 * = 'C': A'*x = b (Conjugate transpose = Transpose) 00043 * 00044 * DIAG (input) CHARACTER*1 00045 * Specifies whether or not the matrix A is unit triangular. 00046 * = 'N': Non-unit triangular 00047 * = 'U': Unit triangular 00048 * 00049 * N (input) INTEGER 00050 * The order of the matrix A. N >= 0. 00051 * 00052 * KD (input) INTEGER 00053 * The number of superdiagonals or subdiagonals of the 00054 * triangular band matrix A. KD >= 0. 00055 * 00056 * NRHS (input) INTEGER 00057 * The number of right hand sides, i.e., the number of columns 00058 * of the matrices X and B. NRHS >= 0. 00059 * 00060 * AB (input) DOUBLE PRECISION array, dimension (LDAB,N) 00061 * The upper or lower triangular band matrix A, stored in the 00062 * first kd+1 rows of the array. The j-th column of A is stored 00063 * in the j-th column of the array AB as follows: 00064 * if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; 00065 * if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). 00066 * 00067 * LDAB (input) INTEGER 00068 * The leading dimension of the array AB. LDAB >= KD+1. 00069 * 00070 * SCALE (input) DOUBLE PRECISION 00071 * The scaling factor s used in solving the triangular system. 00072 * 00073 * CNORM (input) DOUBLE PRECISION array, dimension (N) 00074 * The 1-norms of the columns of A, not counting the diagonal. 00075 * 00076 * TSCAL (input) DOUBLE PRECISION 00077 * The scaling factor used in computing the 1-norms in CNORM. 00078 * CNORM actually contains the column norms of TSCAL*A. 00079 * 00080 * X (input) DOUBLE PRECISION array, dimension (LDX,NRHS) 00081 * The computed solution vectors for the system of linear 00082 * equations. 00083 * 00084 * LDX (input) INTEGER 00085 * The leading dimension of the array X. LDX >= max(1,N). 00086 * 00087 * B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) 00088 * The right hand side vectors for the system of linear 00089 * equations. 00090 * 00091 * LDB (input) INTEGER 00092 * The leading dimension of the array B. LDB >= max(1,N). 00093 * 00094 * WORK (workspace) DOUBLE PRECISION array, dimension (N) 00095 * 00096 * RESID (output) DOUBLE PRECISION 00097 * The maximum over the number of right hand sides of 00098 * norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). 00099 * 00100 * ===================================================================== 00101 * 00102 * .. Parameters .. 00103 DOUBLE PRECISION ONE, ZERO 00104 PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) 00105 * .. 00106 * .. Local Scalars .. 00107 INTEGER IX, J 00108 DOUBLE PRECISION BIGNUM, EPS, ERR, SMLNUM, TNORM, XNORM, XSCAL 00109 * .. 00110 * .. External Functions .. 00111 LOGICAL LSAME 00112 INTEGER IDAMAX 00113 DOUBLE PRECISION DLAMCH 00114 EXTERNAL LSAME, IDAMAX, DLAMCH 00115 * .. 00116 * .. External Subroutines .. 00117 EXTERNAL DAXPY, DCOPY, DLABAD, DSCAL, DTBMV 00118 * .. 00119 * .. Intrinsic Functions .. 00120 INTRINSIC ABS, DBLE, MAX 00121 * .. 00122 * .. Executable Statements .. 00123 * 00124 * Quick exit if N = 0 00125 * 00126 IF( N.LE.0 .OR. NRHS.LE.0 ) THEN 00127 RESID = ZERO 00128 RETURN 00129 END IF 00130 EPS = DLAMCH( 'Epsilon' ) 00131 SMLNUM = DLAMCH( 'Safe minimum' ) 00132 BIGNUM = ONE / SMLNUM 00133 CALL DLABAD( SMLNUM, BIGNUM ) 00134 * 00135 * Compute the norm of the triangular matrix A using the column 00136 * norms already computed by DLATBS. 00137 * 00138 TNORM = ZERO 00139 IF( LSAME( DIAG, 'N' ) ) THEN 00140 IF( LSAME( UPLO, 'U' ) ) THEN 00141 DO 10 J = 1, N 00142 TNORM = MAX( TNORM, TSCAL*ABS( AB( KD+1, J ) )+ 00143 $ CNORM( J ) ) 00144 10 CONTINUE 00145 ELSE 00146 DO 20 J = 1, N 00147 TNORM = MAX( TNORM, TSCAL*ABS( AB( 1, J ) )+CNORM( J ) ) 00148 20 CONTINUE 00149 END IF 00150 ELSE 00151 DO 30 J = 1, N 00152 TNORM = MAX( TNORM, TSCAL+CNORM( J ) ) 00153 30 CONTINUE 00154 END IF 00155 * 00156 * Compute the maximum over the number of right hand sides of 00157 * norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). 00158 * 00159 RESID = ZERO 00160 DO 40 J = 1, NRHS 00161 CALL DCOPY( N, X( 1, J ), 1, WORK, 1 ) 00162 IX = IDAMAX( N, WORK, 1 ) 00163 XNORM = MAX( ONE, ABS( X( IX, J ) ) ) 00164 XSCAL = ( ONE / XNORM ) / DBLE( KD+1 ) 00165 CALL DSCAL( N, XSCAL, WORK, 1 ) 00166 CALL DTBMV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, WORK, 1 ) 00167 CALL DAXPY( N, -SCALE*XSCAL, B( 1, J ), 1, WORK, 1 ) 00168 IX = IDAMAX( N, WORK, 1 ) 00169 ERR = TSCAL*ABS( WORK( IX ) ) 00170 IX = IDAMAX( N, X( 1, J ), 1 ) 00171 XNORM = ABS( X( IX, J ) ) 00172 IF( ERR*SMLNUM.LE.XNORM ) THEN 00173 IF( XNORM.GT.ZERO ) 00174 $ ERR = ERR / XNORM 00175 ELSE 00176 IF( ERR.GT.ZERO ) 00177 $ ERR = ONE / EPS 00178 END IF 00179 IF( ERR*SMLNUM.LE.TNORM ) THEN 00180 IF( TNORM.GT.ZERO ) 00181 $ ERR = ERR / TNORM 00182 ELSE 00183 IF( ERR.GT.ZERO ) 00184 $ ERR = ONE / EPS 00185 END IF 00186 RESID = MAX( RESID, ERR ) 00187 40 CONTINUE 00188 * 00189 RETURN 00190 * 00191 * End of DTBT03 00192 * 00193 END