LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE SGEBAK( JOB, SIDE, N, ILO, IHI, SCALE, M, V, LDV, 00002 $ INFO ) 00003 * 00004 * -- LAPACK routine (version 3.2) -- 00005 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00006 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00007 * November 2006 00008 * 00009 * .. Scalar Arguments .. 00010 CHARACTER JOB, SIDE 00011 INTEGER IHI, ILO, INFO, LDV, M, N 00012 * .. 00013 * .. Array Arguments .. 00014 REAL V( LDV, * ), SCALE( * ) 00015 * .. 00016 * 00017 * Purpose 00018 * ======= 00019 * 00020 * SGEBAK forms the right or left eigenvectors of a real general matrix 00021 * by backward transformation on the computed eigenvectors of the 00022 * balanced matrix output by SGEBAL. 00023 * 00024 * Arguments 00025 * ========= 00026 * 00027 * JOB (input) CHARACTER*1 00028 * Specifies the type of backward transformation required: 00029 * = 'N', do nothing, return immediately; 00030 * = 'P', do backward transformation for permutation only; 00031 * = 'S', do backward transformation for scaling only; 00032 * = 'B', do backward transformations for both permutation and 00033 * scaling. 00034 * JOB must be the same as the argument JOB supplied to SGEBAL. 00035 * 00036 * SIDE (input) CHARACTER*1 00037 * = 'R': V contains right eigenvectors; 00038 * = 'L': V contains left eigenvectors. 00039 * 00040 * N (input) INTEGER 00041 * The number of rows of the matrix V. N >= 0. 00042 * 00043 * ILO (input) INTEGER 00044 * IHI (input) INTEGER 00045 * The integers ILO and IHI determined by SGEBAL. 00046 * 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. 00047 * 00048 * SCALE (input) REAL array, dimension (N) 00049 * Details of the permutation and scaling factors, as returned 00050 * by SGEBAL. 00051 * 00052 * M (input) INTEGER 00053 * The number of columns of the matrix V. M >= 0. 00054 * 00055 * V (input/output) REAL array, dimension (LDV,M) 00056 * On entry, the matrix of right or left eigenvectors to be 00057 * transformed, as returned by SHSEIN or STREVC. 00058 * On exit, V is overwritten by the transformed eigenvectors. 00059 * 00060 * LDV (input) INTEGER 00061 * The leading dimension of the array V. LDV >= max(1,N). 00062 * 00063 * INFO (output) INTEGER 00064 * = 0: successful exit 00065 * < 0: if INFO = -i, the i-th argument had an illegal value. 00066 * 00067 * ===================================================================== 00068 * 00069 * .. Parameters .. 00070 REAL ONE 00071 PARAMETER ( ONE = 1.0E+0 ) 00072 * .. 00073 * .. Local Scalars .. 00074 LOGICAL LEFTV, RIGHTV 00075 INTEGER I, II, K 00076 REAL S 00077 * .. 00078 * .. External Functions .. 00079 LOGICAL LSAME 00080 EXTERNAL LSAME 00081 * .. 00082 * .. External Subroutines .. 00083 EXTERNAL SSCAL, SSWAP, XERBLA 00084 * .. 00085 * .. Intrinsic Functions .. 00086 INTRINSIC MAX, MIN 00087 * .. 00088 * .. Executable Statements .. 00089 * 00090 * Decode and Test the input parameters 00091 * 00092 RIGHTV = LSAME( SIDE, 'R' ) 00093 LEFTV = LSAME( SIDE, 'L' ) 00094 * 00095 INFO = 0 00096 IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND. 00097 $ .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN 00098 INFO = -1 00099 ELSE IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN 00100 INFO = -2 00101 ELSE IF( N.LT.0 ) THEN 00102 INFO = -3 00103 ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN 00104 INFO = -4 00105 ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN 00106 INFO = -5 00107 ELSE IF( M.LT.0 ) THEN 00108 INFO = -7 00109 ELSE IF( LDV.LT.MAX( 1, N ) ) THEN 00110 INFO = -9 00111 END IF 00112 IF( INFO.NE.0 ) THEN 00113 CALL XERBLA( 'SGEBAK', -INFO ) 00114 RETURN 00115 END IF 00116 * 00117 * Quick return if possible 00118 * 00119 IF( N.EQ.0 ) 00120 $ RETURN 00121 IF( M.EQ.0 ) 00122 $ RETURN 00123 IF( LSAME( JOB, 'N' ) ) 00124 $ RETURN 00125 * 00126 IF( ILO.EQ.IHI ) 00127 $ GO TO 30 00128 * 00129 * Backward balance 00130 * 00131 IF( LSAME( JOB, 'S' ) .OR. LSAME( JOB, 'B' ) ) THEN 00132 * 00133 IF( RIGHTV ) THEN 00134 DO 10 I = ILO, IHI 00135 S = SCALE( I ) 00136 CALL SSCAL( M, S, V( I, 1 ), LDV ) 00137 10 CONTINUE 00138 END IF 00139 * 00140 IF( LEFTV ) THEN 00141 DO 20 I = ILO, IHI 00142 S = ONE / SCALE( I ) 00143 CALL SSCAL( M, S, V( I, 1 ), LDV ) 00144 20 CONTINUE 00145 END IF 00146 * 00147 END IF 00148 * 00149 * Backward permutation 00150 * 00151 * For I = ILO-1 step -1 until 1, 00152 * IHI+1 step 1 until N do -- 00153 * 00154 30 CONTINUE 00155 IF( LSAME( JOB, 'P' ) .OR. LSAME( JOB, 'B' ) ) THEN 00156 IF( RIGHTV ) THEN 00157 DO 40 II = 1, N 00158 I = II 00159 IF( I.GE.ILO .AND. I.LE.IHI ) 00160 $ GO TO 40 00161 IF( I.LT.ILO ) 00162 $ I = ILO - II 00163 K = SCALE( I ) 00164 IF( K.EQ.I ) 00165 $ GO TO 40 00166 CALL SSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV ) 00167 40 CONTINUE 00168 END IF 00169 * 00170 IF( LEFTV ) THEN 00171 DO 50 II = 1, N 00172 I = II 00173 IF( I.GE.ILO .AND. I.LE.IHI ) 00174 $ GO TO 50 00175 IF( I.LT.ILO ) 00176 $ I = ILO - II 00177 K = SCALE( I ) 00178 IF( K.EQ.I ) 00179 $ GO TO 50 00180 CALL SSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV ) 00181 50 CONTINUE 00182 END IF 00183 END IF 00184 * 00185 RETURN 00186 * 00187 * End of SGEBAK 00188 * 00189 END