LAPACK 3.3.1
Linear Algebra PACKage

zheevr.f

Go to the documentation of this file.
00001       SUBROUTINE ZHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
00002      $                   ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
00003      $                   RWORK, LRWORK, IWORK, LIWORK, INFO )
00004 *
00005 *  -- LAPACK driver routine (version 3.3.1) --
00006 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00007 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00008 *  -- April 2011                                                      --
00009 *
00010 *     .. Scalar Arguments ..
00011       CHARACTER          JOBZ, RANGE, UPLO
00012       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LRWORK, LWORK,
00013      $                   M, N
00014       DOUBLE PRECISION   ABSTOL, VL, VU
00015 *     ..
00016 *     .. Array Arguments ..
00017       INTEGER            ISUPPZ( * ), IWORK( * )
00018       DOUBLE PRECISION   RWORK( * ), W( * )
00019       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
00020 *     ..
00021 *
00022 *  Purpose
00023 *  =======
00024 *
00025 *  ZHEEVR computes selected eigenvalues and, optionally, eigenvectors
00026 *  of a complex Hermitian matrix A.  Eigenvalues and eigenvectors can
00027 *  be selected by specifying either a range of values or a range of
00028 *  indices for the desired eigenvalues.
00029 *
00030 *  ZHEEVR first reduces the matrix A to tridiagonal form T with a call
00031 *  to ZHETRD.  Then, whenever possible, ZHEEVR calls ZSTEMR to compute
00032 *  eigenspectrum using Relatively Robust Representations.  ZSTEMR
00033 *  computes eigenvalues by the dqds algorithm, while orthogonal
00034 *  eigenvectors are computed from various "good" L D L^T representations
00035 *  (also known as Relatively Robust Representations). Gram-Schmidt
00036 *  orthogonalization is avoided as far as possible. More specifically,
00037 *  the various steps of the algorithm are as follows.
00038 *
00039 *  For each unreduced block (submatrix) of T,
00040 *     (a) Compute T - sigma I  = L D L^T, so that L and D
00041 *         define all the wanted eigenvalues to high relative accuracy.
00042 *         This means that small relative changes in the entries of D and L
00043 *         cause only small relative changes in the eigenvalues and
00044 *         eigenvectors. The standard (unfactored) representation of the
00045 *         tridiagonal matrix T does not have this property in general.
00046 *     (b) Compute the eigenvalues to suitable accuracy.
00047 *         If the eigenvectors are desired, the algorithm attains full
00048 *         accuracy of the computed eigenvalues only right before
00049 *         the corresponding vectors have to be computed, see steps c) and d).
00050 *     (c) For each cluster of close eigenvalues, select a new
00051 *         shift close to the cluster, find a new factorization, and refine
00052 *         the shifted eigenvalues to suitable accuracy.
00053 *     (d) For each eigenvalue with a large enough relative separation compute
00054 *         the corresponding eigenvector by forming a rank revealing twisted
00055 *         factorization. Go back to (c) for any clusters that remain.
00056 *
00057 *  The desired accuracy of the output can be specified by the input
00058 *  parameter ABSTOL.
00059 *
00060 *  For more details, see DSTEMR's documentation and:
00061 *  - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
00062 *    to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
00063 *    Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
00064 *  - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
00065 *    Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
00066 *    2004.  Also LAPACK Working Note 154.
00067 *  - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
00068 *    tridiagonal eigenvalue/eigenvector problem",
00069 *    Computer Science Division Technical Report No. UCB/CSD-97-971,
00070 *    UC Berkeley, May 1997.
00071 *
00072 *
00073 *  Note 1 : ZHEEVR calls ZSTEMR when the full spectrum is requested
00074 *  on machines which conform to the ieee-754 floating point standard.
00075 *  ZHEEVR calls DSTEBZ and ZSTEIN on non-ieee machines and
00076 *  when partial spectrum requests are made.
00077 *
00078 *  Normal execution of ZSTEMR may create NaNs and infinities and
00079 *  hence may abort due to a floating point exception in environments
00080 *  which do not handle NaNs and infinities in the ieee standard default
00081 *  manner.
00082 *
00083 *  Arguments
00084 *  =========
00085 *
00086 *  JOBZ    (input) CHARACTER*1
00087 *          = 'N':  Compute eigenvalues only;
00088 *          = 'V':  Compute eigenvalues and eigenvectors.
00089 *
00090 *  RANGE   (input) CHARACTER*1
00091 *          = 'A': all eigenvalues will be found.
00092 *          = 'V': all eigenvalues in the half-open interval (VL,VU]
00093 *                 will be found.
00094 *          = 'I': the IL-th through IU-th eigenvalues will be found.
00095 *          For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
00096 *          ZSTEIN are called
00097 *
00098 *  UPLO    (input) CHARACTER*1
00099 *          = 'U':  Upper triangle of A is stored;
00100 *          = 'L':  Lower triangle of A is stored.
00101 *
00102 *  N       (input) INTEGER
00103 *          The order of the matrix A.  N >= 0.
00104 *
00105 *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
00106 *          On entry, the Hermitian matrix A.  If UPLO = 'U', the
00107 *          leading N-by-N upper triangular part of A contains the
00108 *          upper triangular part of the matrix A.  If UPLO = 'L',
00109 *          the leading N-by-N lower triangular part of A contains
00110 *          the lower triangular part of the matrix A.
00111 *          On exit, the lower triangle (if UPLO='L') or the upper
00112 *          triangle (if UPLO='U') of A, including the diagonal, is
00113 *          destroyed.
00114 *
00115 *  LDA     (input) INTEGER
00116 *          The leading dimension of the array A.  LDA >= max(1,N).
00117 *
00118 *  VL      (input) DOUBLE PRECISION
00119 *  VU      (input) DOUBLE PRECISION
00120 *          If RANGE='V', the lower and upper bounds of the interval to
00121 *          be searched for eigenvalues. VL < VU.
00122 *          Not referenced if RANGE = 'A' or 'I'.
00123 *
00124 *  IL      (input) INTEGER
00125 *  IU      (input) INTEGER
00126 *          If RANGE='I', the indices (in ascending order) of the
00127 *          smallest and largest eigenvalues to be returned.
00128 *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
00129 *          Not referenced if RANGE = 'A' or 'V'.
00130 *
00131 *  ABSTOL  (input) DOUBLE PRECISION
00132 *          The absolute error tolerance for the eigenvalues.
00133 *          An approximate eigenvalue is accepted as converged
00134 *          when it is determined to lie in an interval [a,b]
00135 *          of width less than or equal to
00136 *
00137 *                  ABSTOL + EPS *   max( |a|,|b| ) ,
00138 *
00139 *          where EPS is the machine precision.  If ABSTOL is less than
00140 *          or equal to zero, then  EPS*|T|  will be used in its place,
00141 *          where |T| is the 1-norm of the tridiagonal matrix obtained
00142 *          by reducing A to tridiagonal form.
00143 *
00144 *          See "Computing Small Singular Values of Bidiagonal Matrices
00145 *          with Guaranteed High Relative Accuracy," by Demmel and
00146 *          Kahan, LAPACK Working Note #3.
00147 *
00148 *          If high relative accuracy is important, set ABSTOL to
00149 *          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that
00150 *          eigenvalues are computed to high relative accuracy when
00151 *          possible in future releases.  The current code does not
00152 *          make any guarantees about high relative accuracy, but
00153 *          furutre releases will. See J. Barlow and J. Demmel,
00154 *          "Computing Accurate Eigensystems of Scaled Diagonally
00155 *          Dominant Matrices", LAPACK Working Note #7, for a discussion
00156 *          of which matrices define their eigenvalues to high relative
00157 *          accuracy.
00158 *
00159 *  M       (output) INTEGER
00160 *          The total number of eigenvalues found.  0 <= M <= N.
00161 *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
00162 *
00163 *  W       (output) DOUBLE PRECISION array, dimension (N)
00164 *          The first M elements contain the selected eigenvalues in
00165 *          ascending order.
00166 *
00167 *  Z       (output) COMPLEX*16 array, dimension (LDZ, max(1,M))
00168 *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
00169 *          contain the orthonormal eigenvectors of the matrix A
00170 *          corresponding to the selected eigenvalues, with the i-th
00171 *          column of Z holding the eigenvector associated with W(i).
00172 *          If JOBZ = 'N', then Z is not referenced.
00173 *          Note: the user must ensure that at least max(1,M) columns are
00174 *          supplied in the array Z; if RANGE = 'V', the exact value of M
00175 *          is not known in advance and an upper bound must be used.
00176 *
00177 *  LDZ     (input) INTEGER
00178 *          The leading dimension of the array Z.  LDZ >= 1, and if
00179 *          JOBZ = 'V', LDZ >= max(1,N).
00180 *
00181 *  ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) )
00182 *          The support of the eigenvectors in Z, i.e., the indices
00183 *          indicating the nonzero elements in Z. The i-th eigenvector
00184 *          is nonzero only in elements ISUPPZ( 2*i-1 ) through
00185 *          ISUPPZ( 2*i ).
00186 *          Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
00187 *
00188 *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
00189 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
00190 *
00191 *  LWORK   (input) INTEGER
00192 *          The length of the array WORK.  LWORK >= max(1,2*N).
00193 *          For optimal efficiency, LWORK >= (NB+1)*N,
00194 *          where NB is the max of the blocksize for ZHETRD and for
00195 *          ZUNMTR as returned by ILAENV.
00196 *
00197 *          If LWORK = -1, then a workspace query is assumed; the routine
00198 *          only calculates the optimal sizes of the WORK, RWORK and
00199 *          IWORK arrays, returns these values as the first entries of
00200 *          the WORK, RWORK and IWORK arrays, and no error message
00201 *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
00202 *
00203 *  RWORK   (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
00204 *          On exit, if INFO = 0, RWORK(1) returns the optimal
00205 *          (and minimal) LRWORK.
00206 *
00207 *  LRWORK   (input) INTEGER
00208 *          The length of the array RWORK.  LRWORK >= max(1,24*N).
00209 *
00210 *          If LRWORK = -1, then a workspace query is assumed; the
00211 *          routine only calculates the optimal sizes of the WORK, RWORK
00212 *          and IWORK arrays, returns these values as the first entries
00213 *          of the WORK, RWORK and IWORK arrays, and no error message
00214 *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
00215 *
00216 *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
00217 *          On exit, if INFO = 0, IWORK(1) returns the optimal
00218 *          (and minimal) LIWORK.
00219 *
00220 *  LIWORK   (input) INTEGER
00221 *          The dimension of the array IWORK.  LIWORK >= max(1,10*N).
00222 *
00223 *          If LIWORK = -1, then a workspace query is assumed; the
00224 *          routine only calculates the optimal sizes of the WORK, RWORK
00225 *          and IWORK arrays, returns these values as the first entries
00226 *          of the WORK, RWORK and IWORK arrays, and no error message
00227 *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
00228 *
00229 *  INFO    (output) INTEGER
00230 *          = 0:  successful exit
00231 *          < 0:  if INFO = -i, the i-th argument had an illegal value
00232 *          > 0:  Internal error
00233 *
00234 *  Further Details
00235 *  ===============
00236 *
00237 *  Based on contributions by
00238 *     Inderjit Dhillon, IBM Almaden, USA
00239 *     Osni Marques, LBNL/NERSC, USA
00240 *     Ken Stanley, Computer Science Division, University of
00241 *       California at Berkeley, USA
00242 *     Jason Riedy, Computer Science Division, University of
00243 *       California at Berkeley, USA
00244 *
00245 *  =====================================================================
00246 *
00247 *     .. Parameters ..
00248       DOUBLE PRECISION   ZERO, ONE, TWO
00249       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
00250 *     ..
00251 *     .. Local Scalars ..
00252       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
00253      $                   WANTZ, TRYRAC
00254       CHARACTER          ORDER
00255       INTEGER            I, IEEEOK, IINFO, IMAX, INDIBL, INDIFL, INDISP,
00256      $                   INDIWO, INDRD, INDRDD, INDRE, INDREE, INDRWK,
00257      $                   INDTAU, INDWK, INDWKN, ISCALE, ITMP1, J, JJ,
00258      $                   LIWMIN, LLWORK, LLRWORK, LLWRKN, LRWMIN,
00259      $                   LWKOPT, LWMIN, NB, NSPLIT
00260       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
00261      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
00262 *     ..
00263 *     .. External Functions ..
00264       LOGICAL            LSAME
00265       INTEGER            ILAENV
00266       DOUBLE PRECISION   DLAMCH, ZLANSY
00267       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANSY
00268 *     ..
00269 *     .. External Subroutines ..
00270       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
00271      $                   ZHETRD, ZSTEMR, ZSTEIN, ZSWAP, ZUNMTR
00272 *     ..
00273 *     .. Intrinsic Functions ..
00274       INTRINSIC          DBLE, MAX, MIN, SQRT
00275 *     ..
00276 *     .. Executable Statements ..
00277 *
00278 *     Test the input parameters.
00279 *
00280       IEEEOK = ILAENV( 10, 'ZHEEVR', 'N', 1, 2, 3, 4 )
00281 *
00282       LOWER = LSAME( UPLO, 'L' )
00283       WANTZ = LSAME( JOBZ, 'V' )
00284       ALLEIG = LSAME( RANGE, 'A' )
00285       VALEIG = LSAME( RANGE, 'V' )
00286       INDEIG = LSAME( RANGE, 'I' )
00287 *
00288       LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LRWORK.EQ.-1 ) .OR.
00289      $         ( LIWORK.EQ.-1 ) )
00290 *
00291       LRWMIN = MAX( 1, 24*N )
00292       LIWMIN = MAX( 1, 10*N )
00293       LWMIN = MAX( 1, 2*N )
00294 *
00295       INFO = 0
00296       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
00297          INFO = -1
00298       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
00299          INFO = -2
00300       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
00301          INFO = -3
00302       ELSE IF( N.LT.0 ) THEN
00303          INFO = -4
00304       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
00305          INFO = -6
00306       ELSE
00307          IF( VALEIG ) THEN
00308             IF( N.GT.0 .AND. VU.LE.VL )
00309      $         INFO = -8
00310          ELSE IF( INDEIG ) THEN
00311             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
00312                INFO = -9
00313             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
00314                INFO = -10
00315             END IF
00316          END IF
00317       END IF
00318       IF( INFO.EQ.0 ) THEN
00319          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
00320             INFO = -15
00321          END IF
00322       END IF
00323 *
00324       IF( INFO.EQ.0 ) THEN
00325          NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
00326          NB = MAX( NB, ILAENV( 1, 'ZUNMTR', UPLO, N, -1, -1, -1 ) )
00327          LWKOPT = MAX( ( NB+1 )*N, LWMIN )
00328          WORK( 1 ) = LWKOPT
00329          RWORK( 1 ) = LRWMIN
00330          IWORK( 1 ) = LIWMIN
00331 *
00332          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
00333             INFO = -18
00334          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
00335             INFO = -20
00336          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
00337             INFO = -22
00338          END IF
00339       END IF
00340 *
00341       IF( INFO.NE.0 ) THEN
00342          CALL XERBLA( 'ZHEEVR', -INFO )
00343          RETURN
00344       ELSE IF( LQUERY ) THEN
00345          RETURN
00346       END IF
00347 *
00348 *     Quick return if possible
00349 *
00350       M = 0
00351       IF( N.EQ.0 ) THEN
00352          WORK( 1 ) = 1
00353          RETURN
00354       END IF
00355 *
00356       IF( N.EQ.1 ) THEN
00357          WORK( 1 ) = 2
00358          IF( ALLEIG .OR. INDEIG ) THEN
00359             M = 1
00360             W( 1 ) = DBLE( A( 1, 1 ) )
00361          ELSE
00362             IF( VL.LT.DBLE( A( 1, 1 ) ) .AND. VU.GE.DBLE( A( 1, 1 ) ) )
00363      $           THEN
00364                M = 1
00365                W( 1 ) = DBLE( A( 1, 1 ) )
00366             END IF
00367          END IF
00368          IF( WANTZ ) THEN
00369             Z( 1, 1 ) = ONE
00370             ISUPPZ( 1 ) = 1
00371             ISUPPZ( 2 ) = 1
00372          END IF
00373          RETURN
00374       END IF
00375 *
00376 *     Get machine constants.
00377 *
00378       SAFMIN = DLAMCH( 'Safe minimum' )
00379       EPS = DLAMCH( 'Precision' )
00380       SMLNUM = SAFMIN / EPS
00381       BIGNUM = ONE / SMLNUM
00382       RMIN = SQRT( SMLNUM )
00383       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
00384 *
00385 *     Scale matrix to allowable range, if necessary.
00386 *
00387       ISCALE = 0
00388       ABSTLL = ABSTOL
00389       IF (VALEIG) THEN
00390          VLL = VL
00391          VUU = VU
00392       END IF
00393       ANRM = ZLANSY( 'M', UPLO, N, A, LDA, RWORK )
00394       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
00395          ISCALE = 1
00396          SIGMA = RMIN / ANRM
00397       ELSE IF( ANRM.GT.RMAX ) THEN
00398          ISCALE = 1
00399          SIGMA = RMAX / ANRM
00400       END IF
00401       IF( ISCALE.EQ.1 ) THEN
00402          IF( LOWER ) THEN
00403             DO 10 J = 1, N
00404                CALL ZDSCAL( N-J+1, SIGMA, A( J, J ), 1 )
00405    10       CONTINUE
00406          ELSE
00407             DO 20 J = 1, N
00408                CALL ZDSCAL( J, SIGMA, A( 1, J ), 1 )
00409    20       CONTINUE
00410          END IF
00411          IF( ABSTOL.GT.0 )
00412      $      ABSTLL = ABSTOL*SIGMA
00413          IF( VALEIG ) THEN
00414             VLL = VL*SIGMA
00415             VUU = VU*SIGMA
00416          END IF
00417       END IF
00418 
00419 *     Initialize indices into workspaces.  Note: The IWORK indices are
00420 *     used only if DSTERF or ZSTEMR fail.
00421 
00422 *     WORK(INDTAU:INDTAU+N-1) stores the complex scalar factors of the
00423 *     elementary reflectors used in ZHETRD.
00424       INDTAU = 1
00425 *     INDWK is the starting offset of the remaining complex workspace,
00426 *     and LLWORK is the remaining complex workspace size.
00427       INDWK = INDTAU + N
00428       LLWORK = LWORK - INDWK + 1
00429 
00430 *     RWORK(INDRD:INDRD+N-1) stores the real tridiagonal's diagonal
00431 *     entries.
00432       INDRD = 1
00433 *     RWORK(INDRE:INDRE+N-1) stores the off-diagonal entries of the
00434 *     tridiagonal matrix from ZHETRD.
00435       INDRE = INDRD + N
00436 *     RWORK(INDRDD:INDRDD+N-1) is a copy of the diagonal entries over
00437 *     -written by ZSTEMR (the DSTERF path copies the diagonal to W).
00438       INDRDD = INDRE + N
00439 *     RWORK(INDREE:INDREE+N-1) is a copy of the off-diagonal entries over
00440 *     -written while computing the eigenvalues in DSTERF and ZSTEMR.
00441       INDREE = INDRDD + N
00442 *     INDRWK is the starting offset of the left-over real workspace, and
00443 *     LLRWORK is the remaining workspace size.
00444       INDRWK = INDREE + N
00445       LLRWORK = LRWORK - INDRWK + 1
00446 
00447 *     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
00448 *     stores the block indices of each of the M<=N eigenvalues.
00449       INDIBL = 1
00450 *     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
00451 *     stores the starting and finishing indices of each block.
00452       INDISP = INDIBL + N
00453 *     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
00454 *     that corresponding to eigenvectors that fail to converge in
00455 *     DSTEIN.  This information is discarded; if any fail, the driver
00456 *     returns INFO > 0.
00457       INDIFL = INDISP + N
00458 *     INDIWO is the offset of the remaining integer workspace.
00459       INDIWO = INDISP + N
00460 
00461 *
00462 *     Call ZHETRD to reduce Hermitian matrix to tridiagonal form.
00463 *
00464       CALL ZHETRD( UPLO, N, A, LDA, RWORK( INDRD ), RWORK( INDRE ),
00465      $             WORK( INDTAU ), WORK( INDWK ), LLWORK, IINFO )
00466 *
00467 *     If all eigenvalues are desired
00468 *     then call DSTERF or ZSTEMR and ZUNMTR.
00469 *
00470       TEST = .FALSE.
00471       IF( INDEIG ) THEN
00472          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
00473             TEST = .TRUE.
00474          END IF
00475       END IF
00476       IF( ( ALLEIG.OR.TEST ) .AND. ( IEEEOK.EQ.1 ) ) THEN
00477          IF( .NOT.WANTZ ) THEN
00478             CALL DCOPY( N, RWORK( INDRD ), 1, W, 1 )
00479             CALL DCOPY( N-1, RWORK( INDRE ), 1, RWORK( INDREE ), 1 )
00480             CALL DSTERF( N, W, RWORK( INDREE ), INFO )
00481          ELSE
00482             CALL DCOPY( N-1, RWORK( INDRE ), 1, RWORK( INDREE ), 1 )
00483             CALL DCOPY( N, RWORK( INDRD ), 1, RWORK( INDRDD ), 1 )
00484 *
00485             IF (ABSTOL .LE. TWO*N*EPS) THEN
00486                TRYRAC = .TRUE.
00487             ELSE
00488                TRYRAC = .FALSE.
00489             END IF
00490             CALL ZSTEMR( JOBZ, 'A', N, RWORK( INDRDD ),
00491      $                   RWORK( INDREE ), VL, VU, IL, IU, M, W,
00492      $                   Z, LDZ, N, ISUPPZ, TRYRAC,
00493      $                   RWORK( INDRWK ), LLRWORK,
00494      $                   IWORK, LIWORK, INFO )
00495 *
00496 *           Apply unitary matrix used in reduction to tridiagonal
00497 *           form to eigenvectors returned by ZSTEIN.
00498 *
00499             IF( WANTZ .AND. INFO.EQ.0 ) THEN
00500                INDWKN = INDWK
00501                LLWRKN = LWORK - INDWKN + 1
00502                CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA,
00503      $                      WORK( INDTAU ), Z, LDZ, WORK( INDWKN ),
00504      $                      LLWRKN, IINFO )
00505             END IF
00506          END IF
00507 *
00508 *
00509          IF( INFO.EQ.0 ) THEN
00510             M = N
00511             GO TO 30
00512          END IF
00513          INFO = 0
00514       END IF
00515 *
00516 *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
00517 *     Also call DSTEBZ and ZSTEIN if ZSTEMR fails.
00518 *
00519       IF( WANTZ ) THEN
00520          ORDER = 'B'
00521       ELSE
00522          ORDER = 'E'
00523       END IF
00524 
00525       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
00526      $             RWORK( INDRD ), RWORK( INDRE ), M, NSPLIT, W,
00527      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
00528      $             IWORK( INDIWO ), INFO )
00529 *
00530       IF( WANTZ ) THEN
00531          CALL ZSTEIN( N, RWORK( INDRD ), RWORK( INDRE ), M, W,
00532      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
00533      $                RWORK( INDRWK ), IWORK( INDIWO ), IWORK( INDIFL ),
00534      $                INFO )
00535 *
00536 *        Apply unitary matrix used in reduction to tridiagonal
00537 *        form to eigenvectors returned by ZSTEIN.
00538 *
00539          INDWKN = INDWK
00540          LLWRKN = LWORK - INDWKN + 1
00541          CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
00542      $                LDZ, WORK( INDWKN ), LLWRKN, IINFO )
00543       END IF
00544 *
00545 *     If matrix was scaled, then rescale eigenvalues appropriately.
00546 *
00547    30 CONTINUE
00548       IF( ISCALE.EQ.1 ) THEN
00549          IF( INFO.EQ.0 ) THEN
00550             IMAX = M
00551          ELSE
00552             IMAX = INFO - 1
00553          END IF
00554          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
00555       END IF
00556 *
00557 *     If eigenvalues are not in order, then sort them, along with
00558 *     eigenvectors.
00559 *
00560       IF( WANTZ ) THEN
00561          DO 50 J = 1, M - 1
00562             I = 0
00563             TMP1 = W( J )
00564             DO 40 JJ = J + 1, M
00565                IF( W( JJ ).LT.TMP1 ) THEN
00566                   I = JJ
00567                   TMP1 = W( JJ )
00568                END IF
00569    40       CONTINUE
00570 *
00571             IF( I.NE.0 ) THEN
00572                ITMP1 = IWORK( INDIBL+I-1 )
00573                W( I ) = W( J )
00574                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
00575                W( J ) = TMP1
00576                IWORK( INDIBL+J-1 ) = ITMP1
00577                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
00578             END IF
00579    50    CONTINUE
00580       END IF
00581 *
00582 *     Set WORK(1) to optimal workspace size.
00583 *
00584       WORK( 1 ) = LWKOPT
00585       RWORK( 1 ) = LRWMIN
00586       IWORK( 1 ) = LIWMIN
00587 *
00588       RETURN
00589 *
00590 *     End of ZHEEVR
00591 *
00592       END
 All Files Functions