LAPACK 3.3.1
Linear Algebra PACKage

cgtrfs.f

Go to the documentation of this file.
00001       SUBROUTINE CGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2,
00002      $                   IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK,
00003      $                   INFO )
00004 *
00005 *  -- LAPACK routine (version 3.2) --
00006 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00007 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00008 *     November 2006
00009 *
00010 *     Modified to call CLACN2 in place of CLACON, 10 Feb 03, SJH.
00011 *
00012 *     .. Scalar Arguments ..
00013       CHARACTER          TRANS
00014       INTEGER            INFO, LDB, LDX, N, NRHS
00015 *     ..
00016 *     .. Array Arguments ..
00017       INTEGER            IPIV( * )
00018       REAL               BERR( * ), FERR( * ), RWORK( * )
00019       COMPLEX            B( LDB, * ), D( * ), DF( * ), DL( * ),
00020      $                   DLF( * ), DU( * ), DU2( * ), DUF( * ),
00021      $                   WORK( * ), X( LDX, * )
00022 *     ..
00023 *
00024 *  Purpose
00025 *  =======
00026 *
00027 *  CGTRFS improves the computed solution to a system of linear
00028 *  equations when the coefficient matrix is tridiagonal, and provides
00029 *  error bounds and backward error estimates for the solution.
00030 *
00031 *  Arguments
00032 *  =========
00033 *
00034 *  TRANS   (input) CHARACTER*1
00035 *          Specifies the form of the system of equations:
00036 *          = 'N':  A * X = B     (No transpose)
00037 *          = 'T':  A**T * X = B  (Transpose)
00038 *          = 'C':  A**H * X = B  (Conjugate transpose)
00039 *
00040 *  N       (input) INTEGER
00041 *          The order of the matrix A.  N >= 0.
00042 *
00043 *  NRHS    (input) INTEGER
00044 *          The number of right hand sides, i.e., the number of columns
00045 *          of the matrix B.  NRHS >= 0.
00046 *
00047 *  DL      (input) COMPLEX array, dimension (N-1)
00048 *          The (n-1) subdiagonal elements of A.
00049 *
00050 *  D       (input) COMPLEX array, dimension (N)
00051 *          The diagonal elements of A.
00052 *
00053 *  DU      (input) COMPLEX array, dimension (N-1)
00054 *          The (n-1) superdiagonal elements of A.
00055 *
00056 *  DLF     (input) COMPLEX array, dimension (N-1)
00057 *          The (n-1) multipliers that define the matrix L from the
00058 *          LU factorization of A as computed by CGTTRF.
00059 *
00060 *  DF      (input) COMPLEX array, dimension (N)
00061 *          The n diagonal elements of the upper triangular matrix U from
00062 *          the LU factorization of A.
00063 *
00064 *  DUF     (input) COMPLEX array, dimension (N-1)
00065 *          The (n-1) elements of the first superdiagonal of U.
00066 *
00067 *  DU2     (input) COMPLEX array, dimension (N-2)
00068 *          The (n-2) elements of the second superdiagonal of U.
00069 *
00070 *  IPIV    (input) INTEGER array, dimension (N)
00071 *          The pivot indices; for 1 <= i <= n, row i of the matrix was
00072 *          interchanged with row IPIV(i).  IPIV(i) will always be either
00073 *          i or i+1; IPIV(i) = i indicates a row interchange was not
00074 *          required.
00075 *
00076 *  B       (input) COMPLEX array, dimension (LDB,NRHS)
00077 *          The right hand side matrix B.
00078 *
00079 *  LDB     (input) INTEGER
00080 *          The leading dimension of the array B.  LDB >= max(1,N).
00081 *
00082 *  X       (input/output) COMPLEX array, dimension (LDX,NRHS)
00083 *          On entry, the solution matrix X, as computed by CGTTRS.
00084 *          On exit, the improved solution matrix X.
00085 *
00086 *  LDX     (input) INTEGER
00087 *          The leading dimension of the array X.  LDX >= max(1,N).
00088 *
00089 *  FERR    (output) REAL array, dimension (NRHS)
00090 *          The estimated forward error bound for each solution vector
00091 *          X(j) (the j-th column of the solution matrix X).
00092 *          If XTRUE is the true solution corresponding to X(j), FERR(j)
00093 *          is an estimated upper bound for the magnitude of the largest
00094 *          element in (X(j) - XTRUE) divided by the magnitude of the
00095 *          largest element in X(j).  The estimate is as reliable as
00096 *          the estimate for RCOND, and is almost always a slight
00097 *          overestimate of the true error.
00098 *
00099 *  BERR    (output) REAL array, dimension (NRHS)
00100 *          The componentwise relative backward error of each solution
00101 *          vector X(j) (i.e., the smallest relative change in
00102 *          any element of A or B that makes X(j) an exact solution).
00103 *
00104 *  WORK    (workspace) COMPLEX array, dimension (2*N)
00105 *
00106 *  RWORK   (workspace) REAL array, dimension (N)
00107 *
00108 *  INFO    (output) INTEGER
00109 *          = 0:  successful exit
00110 *          < 0:  if INFO = -i, the i-th argument had an illegal value
00111 *
00112 *  Internal Parameters
00113 *  ===================
00114 *
00115 *  ITMAX is the maximum number of steps of iterative refinement.
00116 *
00117 *  =====================================================================
00118 *
00119 *     .. Parameters ..
00120       INTEGER            ITMAX
00121       PARAMETER          ( ITMAX = 5 )
00122       REAL               ZERO, ONE
00123       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
00124       REAL               TWO
00125       PARAMETER          ( TWO = 2.0E+0 )
00126       REAL               THREE
00127       PARAMETER          ( THREE = 3.0E+0 )
00128 *     ..
00129 *     .. Local Scalars ..
00130       LOGICAL            NOTRAN
00131       CHARACTER          TRANSN, TRANST
00132       INTEGER            COUNT, I, J, KASE, NZ
00133       REAL               EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN
00134       COMPLEX            ZDUM
00135 *     ..
00136 *     .. Local Arrays ..
00137       INTEGER            ISAVE( 3 )
00138 *     ..
00139 *     .. External Subroutines ..
00140       EXTERNAL           CAXPY, CCOPY, CGTTRS, CLACN2, CLAGTM, XERBLA
00141 *     ..
00142 *     .. Intrinsic Functions ..
00143       INTRINSIC          ABS, AIMAG, CMPLX, MAX, REAL
00144 *     ..
00145 *     .. External Functions ..
00146       LOGICAL            LSAME
00147       REAL               SLAMCH
00148       EXTERNAL           LSAME, SLAMCH
00149 *     ..
00150 *     .. Statement Functions ..
00151       REAL               CABS1
00152 *     ..
00153 *     .. Statement Function definitions ..
00154       CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
00155 *     ..
00156 *     .. Executable Statements ..
00157 *
00158 *     Test the input parameters.
00159 *
00160       INFO = 0
00161       NOTRAN = LSAME( TRANS, 'N' )
00162       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
00163      $    LSAME( TRANS, 'C' ) ) THEN
00164          INFO = -1
00165       ELSE IF( N.LT.0 ) THEN
00166          INFO = -2
00167       ELSE IF( NRHS.LT.0 ) THEN
00168          INFO = -3
00169       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
00170          INFO = -13
00171       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
00172          INFO = -15
00173       END IF
00174       IF( INFO.NE.0 ) THEN
00175          CALL XERBLA( 'CGTRFS', -INFO )
00176          RETURN
00177       END IF
00178 *
00179 *     Quick return if possible
00180 *
00181       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
00182          DO 10 J = 1, NRHS
00183             FERR( J ) = ZERO
00184             BERR( J ) = ZERO
00185    10    CONTINUE
00186          RETURN
00187       END IF
00188 *
00189       IF( NOTRAN ) THEN
00190          TRANSN = 'N'
00191          TRANST = 'C'
00192       ELSE
00193          TRANSN = 'C'
00194          TRANST = 'N'
00195       END IF
00196 *
00197 *     NZ = maximum number of nonzero elements in each row of A, plus 1
00198 *
00199       NZ = 4
00200       EPS = SLAMCH( 'Epsilon' )
00201       SAFMIN = SLAMCH( 'Safe minimum' )
00202       SAFE1 = NZ*SAFMIN
00203       SAFE2 = SAFE1 / EPS
00204 *
00205 *     Do for each right hand side
00206 *
00207       DO 110 J = 1, NRHS
00208 *
00209          COUNT = 1
00210          LSTRES = THREE
00211    20    CONTINUE
00212 *
00213 *        Loop until stopping criterion is satisfied.
00214 *
00215 *        Compute residual R = B - op(A) * X,
00216 *        where op(A) = A, A**T, or A**H, depending on TRANS.
00217 *
00218          CALL CCOPY( N, B( 1, J ), 1, WORK, 1 )
00219          CALL CLAGTM( TRANS, N, 1, -ONE, DL, D, DU, X( 1, J ), LDX, ONE,
00220      $                WORK, N )
00221 *
00222 *        Compute abs(op(A))*abs(x) + abs(b) for use in the backward
00223 *        error bound.
00224 *
00225          IF( NOTRAN ) THEN
00226             IF( N.EQ.1 ) THEN
00227                RWORK( 1 ) = CABS1( B( 1, J ) ) +
00228      $                      CABS1( D( 1 ) )*CABS1( X( 1, J ) )
00229             ELSE
00230                RWORK( 1 ) = CABS1( B( 1, J ) ) +
00231      $                      CABS1( D( 1 ) )*CABS1( X( 1, J ) ) +
00232      $                      CABS1( DU( 1 ) )*CABS1( X( 2, J ) )
00233                DO 30 I = 2, N - 1
00234                   RWORK( I ) = CABS1( B( I, J ) ) +
00235      $                         CABS1( DL( I-1 ) )*CABS1( X( I-1, J ) ) +
00236      $                         CABS1( D( I ) )*CABS1( X( I, J ) ) +
00237      $                         CABS1( DU( I ) )*CABS1( X( I+1, J ) )
00238    30          CONTINUE
00239                RWORK( N ) = CABS1( B( N, J ) ) +
00240      $                      CABS1( DL( N-1 ) )*CABS1( X( N-1, J ) ) +
00241      $                      CABS1( D( N ) )*CABS1( X( N, J ) )
00242             END IF
00243          ELSE
00244             IF( N.EQ.1 ) THEN
00245                RWORK( 1 ) = CABS1( B( 1, J ) ) +
00246      $                      CABS1( D( 1 ) )*CABS1( X( 1, J ) )
00247             ELSE
00248                RWORK( 1 ) = CABS1( B( 1, J ) ) +
00249      $                      CABS1( D( 1 ) )*CABS1( X( 1, J ) ) +
00250      $                      CABS1( DL( 1 ) )*CABS1( X( 2, J ) )
00251                DO 40 I = 2, N - 1
00252                   RWORK( I ) = CABS1( B( I, J ) ) +
00253      $                         CABS1( DU( I-1 ) )*CABS1( X( I-1, J ) ) +
00254      $                         CABS1( D( I ) )*CABS1( X( I, J ) ) +
00255      $                         CABS1( DL( I ) )*CABS1( X( I+1, J ) )
00256    40          CONTINUE
00257                RWORK( N ) = CABS1( B( N, J ) ) +
00258      $                      CABS1( DU( N-1 ) )*CABS1( X( N-1, J ) ) +
00259      $                      CABS1( D( N ) )*CABS1( X( N, J ) )
00260             END IF
00261          END IF
00262 *
00263 *        Compute componentwise relative backward error from formula
00264 *
00265 *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
00266 *
00267 *        where abs(Z) is the componentwise absolute value of the matrix
00268 *        or vector Z.  If the i-th component of the denominator is less
00269 *        than SAFE2, then SAFE1 is added to the i-th components of the
00270 *        numerator and denominator before dividing.
00271 *
00272          S = ZERO
00273          DO 50 I = 1, N
00274             IF( RWORK( I ).GT.SAFE2 ) THEN
00275                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
00276             ELSE
00277                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
00278      $             ( RWORK( I )+SAFE1 ) )
00279             END IF
00280    50    CONTINUE
00281          BERR( J ) = S
00282 *
00283 *        Test stopping criterion. Continue iterating if
00284 *           1) The residual BERR(J) is larger than machine epsilon, and
00285 *           2) BERR(J) decreased by at least a factor of 2 during the
00286 *              last iteration, and
00287 *           3) At most ITMAX iterations tried.
00288 *
00289          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
00290      $       COUNT.LE.ITMAX ) THEN
00291 *
00292 *           Update solution and try again.
00293 *
00294             CALL CGTTRS( TRANS, N, 1, DLF, DF, DUF, DU2, IPIV, WORK, N,
00295      $                   INFO )
00296             CALL CAXPY( N, CMPLX( ONE ), WORK, 1, X( 1, J ), 1 )
00297             LSTRES = BERR( J )
00298             COUNT = COUNT + 1
00299             GO TO 20
00300          END IF
00301 *
00302 *        Bound error from formula
00303 *
00304 *        norm(X - XTRUE) / norm(X) .le. FERR =
00305 *        norm( abs(inv(op(A)))*
00306 *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
00307 *
00308 *        where
00309 *          norm(Z) is the magnitude of the largest component of Z
00310 *          inv(op(A)) is the inverse of op(A)
00311 *          abs(Z) is the componentwise absolute value of the matrix or
00312 *             vector Z
00313 *          NZ is the maximum number of nonzeros in any row of A, plus 1
00314 *          EPS is machine epsilon
00315 *
00316 *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
00317 *        is incremented by SAFE1 if the i-th component of
00318 *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
00319 *
00320 *        Use CLACN2 to estimate the infinity-norm of the matrix
00321 *           inv(op(A)) * diag(W),
00322 *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
00323 *
00324          DO 60 I = 1, N
00325             IF( RWORK( I ).GT.SAFE2 ) THEN
00326                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
00327             ELSE
00328                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
00329      $                      SAFE1
00330             END IF
00331    60    CONTINUE
00332 *
00333          KASE = 0
00334    70    CONTINUE
00335          CALL CLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
00336          IF( KASE.NE.0 ) THEN
00337             IF( KASE.EQ.1 ) THEN
00338 *
00339 *              Multiply by diag(W)*inv(op(A)**H).
00340 *
00341                CALL CGTTRS( TRANST, N, 1, DLF, DF, DUF, DU2, IPIV, WORK,
00342      $                      N, INFO )
00343                DO 80 I = 1, N
00344                   WORK( I ) = RWORK( I )*WORK( I )
00345    80          CONTINUE
00346             ELSE
00347 *
00348 *              Multiply by inv(op(A))*diag(W).
00349 *
00350                DO 90 I = 1, N
00351                   WORK( I ) = RWORK( I )*WORK( I )
00352    90          CONTINUE
00353                CALL CGTTRS( TRANSN, N, 1, DLF, DF, DUF, DU2, IPIV, WORK,
00354      $                      N, INFO )
00355             END IF
00356             GO TO 70
00357          END IF
00358 *
00359 *        Normalize error.
00360 *
00361          LSTRES = ZERO
00362          DO 100 I = 1, N
00363             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
00364   100    CONTINUE
00365          IF( LSTRES.NE.ZERO )
00366      $      FERR( J ) = FERR( J ) / LSTRES
00367 *
00368   110 CONTINUE
00369 *
00370       RETURN
00371 *
00372 *     End of CGTRFS
00373 *
00374       END
 All Files Functions