LAPACK 3.3.1
Linear Algebra PACKage
|
00001 REAL FUNCTION CLA_GERCOND_X( TRANS, N, A, LDA, AF, LDAF, IPIV, X, 00002 $ INFO, WORK, RWORK ) 00003 * 00004 * -- LAPACK routine (version 3.2.1) -- 00005 * -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- 00006 * -- Jason Riedy of Univ. of California Berkeley. -- 00007 * -- April 2009 -- 00008 * 00009 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00010 * -- Univ. of California Berkeley and NAG Ltd. -- 00011 * 00012 IMPLICIT NONE 00013 * .. 00014 * .. Scalar Arguments .. 00015 CHARACTER TRANS 00016 INTEGER N, LDA, LDAF, INFO 00017 * .. 00018 * .. Array Arguments .. 00019 INTEGER IPIV( * ) 00020 COMPLEX A( LDA, * ), AF( LDAF, * ), WORK( * ), X( * ) 00021 REAL RWORK( * ) 00022 * .. 00023 * 00024 * Purpose 00025 * ======= 00026 * 00027 * CLA_GERCOND_X computes the infinity norm condition number of 00028 * op(A) * diag(X) where X is a COMPLEX vector. 00029 * 00030 * Arguments 00031 * ========= 00032 * 00033 * TRANS (input) CHARACTER*1 00034 * Specifies the form of the system of equations: 00035 * = 'N': A * X = B (No transpose) 00036 * = 'T': A**T * X = B (Transpose) 00037 * = 'C': A**H * X = B (Conjugate Transpose = Transpose) 00038 * 00039 * N (input) INTEGER 00040 * The number of linear equations, i.e., the order of the 00041 * matrix A. N >= 0. 00042 * 00043 * A (input) COMPLEX array, dimension (LDA,N) 00044 * On entry, the N-by-N matrix A. 00045 * 00046 * LDA (input) INTEGER 00047 * The leading dimension of the array A. LDA >= max(1,N). 00048 * 00049 * AF (input) COMPLEX array, dimension (LDAF,N) 00050 * The factors L and U from the factorization 00051 * A = P*L*U as computed by CGETRF. 00052 * 00053 * LDAF (input) INTEGER 00054 * The leading dimension of the array AF. LDAF >= max(1,N). 00055 * 00056 * IPIV (input) INTEGER array, dimension (N) 00057 * The pivot indices from the factorization A = P*L*U 00058 * as computed by CGETRF; row i of the matrix was interchanged 00059 * with row IPIV(i). 00060 * 00061 * X (input) COMPLEX array, dimension (N) 00062 * The vector X in the formula op(A) * diag(X). 00063 * 00064 * INFO (output) INTEGER 00065 * = 0: Successful exit. 00066 * i > 0: The ith argument is invalid. 00067 * 00068 * WORK (input) COMPLEX array, dimension (2*N). 00069 * Workspace. 00070 * 00071 * RWORK (input) REAL array, dimension (N). 00072 * Workspace. 00073 * 00074 * ===================================================================== 00075 * 00076 * .. Local Scalars .. 00077 LOGICAL NOTRANS 00078 INTEGER KASE 00079 REAL AINVNM, ANORM, TMP 00080 INTEGER I, J 00081 COMPLEX ZDUM 00082 * .. 00083 * .. Local Arrays .. 00084 INTEGER ISAVE( 3 ) 00085 * .. 00086 * .. External Functions .. 00087 LOGICAL LSAME 00088 EXTERNAL LSAME 00089 * .. 00090 * .. External Subroutines .. 00091 EXTERNAL CLACN2, CGETRS, XERBLA 00092 * .. 00093 * .. Intrinsic Functions .. 00094 INTRINSIC ABS, MAX, REAL, AIMAG 00095 * .. 00096 * .. Statement Functions .. 00097 REAL CABS1 00098 * .. 00099 * .. Statement Function Definitions .. 00100 CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) ) 00101 * .. 00102 * .. Executable Statements .. 00103 * 00104 CLA_GERCOND_X = 0.0E+0 00105 * 00106 INFO = 0 00107 NOTRANS = LSAME( TRANS, 'N' ) 00108 IF ( .NOT. NOTRANS .AND. .NOT. LSAME( TRANS, 'T' ) .AND. .NOT. 00109 $ LSAME( TRANS, 'C' ) ) THEN 00110 INFO = -1 00111 ELSE IF( N.LT.0 ) THEN 00112 INFO = -2 00113 END IF 00114 IF( INFO.NE.0 ) THEN 00115 CALL XERBLA( 'CLA_GERCOND_X', -INFO ) 00116 RETURN 00117 END IF 00118 * 00119 * Compute norm of op(A)*op2(C). 00120 * 00121 ANORM = 0.0 00122 IF ( NOTRANS ) THEN 00123 DO I = 1, N 00124 TMP = 0.0E+0 00125 DO J = 1, N 00126 TMP = TMP + CABS1( A( I, J ) * X( J ) ) 00127 END DO 00128 RWORK( I ) = TMP 00129 ANORM = MAX( ANORM, TMP ) 00130 END DO 00131 ELSE 00132 DO I = 1, N 00133 TMP = 0.0E+0 00134 DO J = 1, N 00135 TMP = TMP + CABS1( A( J, I ) * X( J ) ) 00136 END DO 00137 RWORK( I ) = TMP 00138 ANORM = MAX( ANORM, TMP ) 00139 END DO 00140 END IF 00141 * 00142 * Quick return if possible. 00143 * 00144 IF( N.EQ.0 ) THEN 00145 CLA_GERCOND_X = 1.0E+0 00146 RETURN 00147 ELSE IF( ANORM .EQ. 0.0E+0 ) THEN 00148 RETURN 00149 END IF 00150 * 00151 * Estimate the norm of inv(op(A)). 00152 * 00153 AINVNM = 0.0E+0 00154 * 00155 KASE = 0 00156 10 CONTINUE 00157 CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE ) 00158 IF( KASE.NE.0 ) THEN 00159 IF( KASE.EQ.2 ) THEN 00160 * Multiply by R. 00161 DO I = 1, N 00162 WORK( I ) = WORK( I ) * RWORK( I ) 00163 END DO 00164 * 00165 IF ( NOTRANS ) THEN 00166 CALL CGETRS( 'No transpose', N, 1, AF, LDAF, IPIV, 00167 $ WORK, N, INFO ) 00168 ELSE 00169 CALL CGETRS( 'Conjugate transpose', N, 1, AF, LDAF, IPIV, 00170 $ WORK, N, INFO ) 00171 ENDIF 00172 * 00173 * Multiply by inv(X). 00174 * 00175 DO I = 1, N 00176 WORK( I ) = WORK( I ) / X( I ) 00177 END DO 00178 ELSE 00179 * 00180 * Multiply by inv(X**H). 00181 * 00182 DO I = 1, N 00183 WORK( I ) = WORK( I ) / X( I ) 00184 END DO 00185 * 00186 IF ( NOTRANS ) THEN 00187 CALL CGETRS( 'Conjugate transpose', N, 1, AF, LDAF, IPIV, 00188 $ WORK, N, INFO ) 00189 ELSE 00190 CALL CGETRS( 'No transpose', N, 1, AF, LDAF, IPIV, 00191 $ WORK, N, INFO ) 00192 END IF 00193 * 00194 * Multiply by R. 00195 * 00196 DO I = 1, N 00197 WORK( I ) = WORK( I ) * RWORK( I ) 00198 END DO 00199 END IF 00200 GO TO 10 00201 END IF 00202 * 00203 * Compute the estimate of the reciprocal condition number. 00204 * 00205 IF( AINVNM .NE. 0.0E+0 ) 00206 $ CLA_GERCOND_X = 1.0E+0 / AINVNM 00207 * 00208 RETURN 00209 * 00210 END