LAPACK 3.3.1
Linear Algebra PACKage

sdrvvx.f

Go to the documentation of this file.
00001       SUBROUTINE SDRVVX( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
00002      $                   NIUNIT, NOUNIT, A, LDA, H, WR, WI, WR1, WI1,
00003      $                   VL, LDVL, VR, LDVR, LRE, LDLRE, RCONDV, RCNDV1,
00004      $                   RCDVIN, RCONDE, RCNDE1, RCDEIN, SCALE, SCALE1,
00005      $                   RESULT, WORK, NWORK, IWORK, INFO )
00006 *
00007 *  -- LAPACK test routine (version 3.1) --
00008 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
00009 *     November 2006
00010 *
00011 *     .. Scalar Arguments ..
00012       INTEGER            INFO, LDA, LDLRE, LDVL, LDVR, NIUNIT, NOUNIT,
00013      $                   NSIZES, NTYPES, NWORK
00014       REAL               THRESH
00015 *     ..
00016 *     .. Array Arguments ..
00017       LOGICAL            DOTYPE( * )
00018       INTEGER            ISEED( 4 ), IWORK( * ), NN( * )
00019       REAL               A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ),
00020      $                   RCDEIN( * ), RCDVIN( * ), RCNDE1( * ),
00021      $                   RCNDV1( * ), RCONDE( * ), RCONDV( * ),
00022      $                   RESULT( 11 ), SCALE( * ), SCALE1( * ),
00023      $                   VL( LDVL, * ), VR( LDVR, * ), WI( * ),
00024      $                   WI1( * ), WORK( * ), WR( * ), WR1( * )
00025 *     ..
00026 *
00027 *  Purpose
00028 *  =======
00029 *
00030 *     SDRVVX  checks the nonsymmetric eigenvalue problem expert driver
00031 *     SGEEVX.
00032 *
00033 *     SDRVVX uses both test matrices generated randomly depending on
00034 *     data supplied in the calling sequence, as well as on data
00035 *     read from an input file and including precomputed condition
00036 *     numbers to which it compares the ones it computes.
00037 *
00038 *     When SDRVVX is called, a number of matrix "sizes" ("n's") and a
00039 *     number of matrix "types" are specified in the calling sequence.
00040 *     For each size ("n") and each type of matrix, one matrix will be
00041 *     generated and used to test the nonsymmetric eigenroutines.  For
00042 *     each matrix, 9 tests will be performed:
00043 *
00044 *     (1)     | A * VR - VR * W | / ( n |A| ulp )
00045 *
00046 *       Here VR is the matrix of unit right eigenvectors.
00047 *       W is a block diagonal matrix, with a 1x1 block for each
00048 *       real eigenvalue and a 2x2 block for each complex conjugate
00049 *       pair.  If eigenvalues j and j+1 are a complex conjugate pair,
00050 *       so WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the
00051 *       2 x 2 block corresponding to the pair will be:
00052 *
00053 *               (  wr  wi  )
00054 *               ( -wi  wr  )
00055 *
00056 *       Such a block multiplying an n x 2 matrix  ( ur ui ) on the
00057 *       right will be the same as multiplying  ur + i*ui  by  wr + i*wi.
00058 *
00059 *     (2)     | A**H * VL - VL * W**H | / ( n |A| ulp )
00060 *
00061 *       Here VL is the matrix of unit left eigenvectors, A**H is the
00062 *       conjugate transpose of A, and W is as above.
00063 *
00064 *     (3)     | |VR(i)| - 1 | / ulp and largest component real
00065 *
00066 *       VR(i) denotes the i-th column of VR.
00067 *
00068 *     (4)     | |VL(i)| - 1 | / ulp and largest component real
00069 *
00070 *       VL(i) denotes the i-th column of VL.
00071 *
00072 *     (5)     W(full) = W(partial)
00073 *
00074 *       W(full) denotes the eigenvalues computed when VR, VL, RCONDV
00075 *       and RCONDE are also computed, and W(partial) denotes the
00076 *       eigenvalues computed when only some of VR, VL, RCONDV, and
00077 *       RCONDE are computed.
00078 *
00079 *     (6)     VR(full) = VR(partial)
00080 *
00081 *       VR(full) denotes the right eigenvectors computed when VL, RCONDV
00082 *       and RCONDE are computed, and VR(partial) denotes the result
00083 *       when only some of VL and RCONDV are computed.
00084 *
00085 *     (7)     VL(full) = VL(partial)
00086 *
00087 *       VL(full) denotes the left eigenvectors computed when VR, RCONDV
00088 *       and RCONDE are computed, and VL(partial) denotes the result
00089 *       when only some of VR and RCONDV are computed.
00090 *
00091 *     (8)     0 if SCALE, ILO, IHI, ABNRM (full) =
00092 *                  SCALE, ILO, IHI, ABNRM (partial)
00093 *             1/ulp otherwise
00094 *
00095 *       SCALE, ILO, IHI and ABNRM describe how the matrix is balanced.
00096 *       (full) is when VR, VL, RCONDE and RCONDV are also computed, and
00097 *       (partial) is when some are not computed.
00098 *
00099 *     (9)     RCONDV(full) = RCONDV(partial)
00100 *
00101 *       RCONDV(full) denotes the reciprocal condition numbers of the
00102 *       right eigenvectors computed when VR, VL and RCONDE are also
00103 *       computed. RCONDV(partial) denotes the reciprocal condition
00104 *       numbers when only some of VR, VL and RCONDE are computed.
00105 *
00106 *     The "sizes" are specified by an array NN(1:NSIZES); the value of
00107 *     each element NN(j) specifies one size.
00108 *     The "types" are specified by a logical array DOTYPE( 1:NTYPES );
00109 *     if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
00110 *     Currently, the list of possible types is:
00111 *
00112 *     (1)  The zero matrix.
00113 *     (2)  The identity matrix.
00114 *     (3)  A (transposed) Jordan block, with 1's on the diagonal.
00115 *
00116 *     (4)  A diagonal matrix with evenly spaced entries
00117 *          1, ..., ULP  and random signs.
00118 *          (ULP = (first number larger than 1) - 1 )
00119 *     (5)  A diagonal matrix with geometrically spaced entries
00120 *          1, ..., ULP  and random signs.
00121 *     (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
00122 *          and random signs.
00123 *
00124 *     (7)  Same as (4), but multiplied by a constant near
00125 *          the overflow threshold
00126 *     (8)  Same as (4), but multiplied by a constant near
00127 *          the underflow threshold
00128 *
00129 *     (9)  A matrix of the form  U' T U, where U is orthogonal and
00130 *          T has evenly spaced entries 1, ..., ULP with random signs
00131 *          on the diagonal and random O(1) entries in the upper
00132 *          triangle.
00133 *
00134 *     (10) A matrix of the form  U' T U, where U is orthogonal and
00135 *          T has geometrically spaced entries 1, ..., ULP with random
00136 *          signs on the diagonal and random O(1) entries in the upper
00137 *          triangle.
00138 *
00139 *     (11) A matrix of the form  U' T U, where U is orthogonal and
00140 *          T has "clustered" entries 1, ULP,..., ULP with random
00141 *          signs on the diagonal and random O(1) entries in the upper
00142 *          triangle.
00143 *
00144 *     (12) A matrix of the form  U' T U, where U is orthogonal and
00145 *          T has real or complex conjugate paired eigenvalues randomly
00146 *          chosen from ( ULP, 1 ) and random O(1) entries in the upper
00147 *          triangle.
00148 *
00149 *     (13) A matrix of the form  X' T X, where X has condition
00150 *          SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP
00151 *          with random signs on the diagonal and random O(1) entries
00152 *          in the upper triangle.
00153 *
00154 *     (14) A matrix of the form  X' T X, where X has condition
00155 *          SQRT( ULP ) and T has geometrically spaced entries
00156 *          1, ..., ULP with random signs on the diagonal and random
00157 *          O(1) entries in the upper triangle.
00158 *
00159 *     (15) A matrix of the form  X' T X, where X has condition
00160 *          SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP
00161 *          with random signs on the diagonal and random O(1) entries
00162 *          in the upper triangle.
00163 *
00164 *     (16) A matrix of the form  X' T X, where X has condition
00165 *          SQRT( ULP ) and T has real or complex conjugate paired
00166 *          eigenvalues randomly chosen from ( ULP, 1 ) and random
00167 *          O(1) entries in the upper triangle.
00168 *
00169 *     (17) Same as (16), but multiplied by a constant
00170 *          near the overflow threshold
00171 *     (18) Same as (16), but multiplied by a constant
00172 *          near the underflow threshold
00173 *
00174 *     (19) Nonsymmetric matrix with random entries chosen from (-1,1).
00175 *          If N is at least 4, all entries in first two rows and last
00176 *          row, and first column and last two columns are zero.
00177 *     (20) Same as (19), but multiplied by a constant
00178 *          near the overflow threshold
00179 *     (21) Same as (19), but multiplied by a constant
00180 *          near the underflow threshold
00181 *
00182 *     In addition, an input file will be read from logical unit number
00183 *     NIUNIT. The file contains matrices along with precomputed
00184 *     eigenvalues and reciprocal condition numbers for the eigenvalues
00185 *     and right eigenvectors. For these matrices, in addition to tests
00186 *     (1) to (9) we will compute the following two tests:
00187 *
00188 *    (10)  |RCONDV - RCDVIN| / cond(RCONDV)
00189 *
00190 *       RCONDV is the reciprocal right eigenvector condition number
00191 *       computed by SGEEVX and RCDVIN (the precomputed true value)
00192 *       is supplied as input. cond(RCONDV) is the condition number of
00193 *       RCONDV, and takes errors in computing RCONDV into account, so
00194 *       that the resulting quantity should be O(ULP). cond(RCONDV) is
00195 *       essentially given by norm(A)/RCONDE.
00196 *
00197 *    (11)  |RCONDE - RCDEIN| / cond(RCONDE)
00198 *
00199 *       RCONDE is the reciprocal eigenvalue condition number
00200 *       computed by SGEEVX and RCDEIN (the precomputed true value)
00201 *       is supplied as input.  cond(RCONDE) is the condition number
00202 *       of RCONDE, and takes errors in computing RCONDE into account,
00203 *       so that the resulting quantity should be O(ULP). cond(RCONDE)
00204 *       is essentially given by norm(A)/RCONDV.
00205 *
00206 *  Arguments
00207 *  ==========
00208 *
00209 *  NSIZES  (input) INTEGER
00210 *          The number of sizes of matrices to use.  NSIZES must be at
00211 *          least zero. If it is zero, no randomly generated matrices
00212 *          are tested, but any test matrices read from NIUNIT will be
00213 *          tested.
00214 *
00215 *  NN      (input) INTEGER array, dimension (NSIZES)
00216 *          An array containing the sizes to be used for the matrices.
00217 *          Zero values will be skipped.  The values must be at least
00218 *          zero.
00219 *
00220 *  NTYPES  (input) INTEGER
00221 *          The number of elements in DOTYPE. NTYPES must be at least
00222 *          zero. If it is zero, no randomly generated test matrices
00223 *          are tested, but and test matrices read from NIUNIT will be
00224 *          tested. If it is MAXTYP+1 and NSIZES is 1, then an
00225 *          additional type, MAXTYP+1 is defined, which is to use
00226 *          whatever matrix is in A.  This is only useful if
00227 *          DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. .
00228 *
00229 *  DOTYPE  (input) LOGICAL array, dimension (NTYPES)
00230 *          If DOTYPE(j) is .TRUE., then for each size in NN a
00231 *          matrix of that size and of type j will be generated.
00232 *          If NTYPES is smaller than the maximum number of types
00233 *          defined (PARAMETER MAXTYP), then types NTYPES+1 through
00234 *          MAXTYP will not be generated.  If NTYPES is larger
00235 *          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
00236 *          will be ignored.
00237 *
00238 *  ISEED   (input/output) INTEGER array, dimension (4)
00239 *          On entry ISEED specifies the seed of the random number
00240 *          generator. The array elements should be between 0 and 4095;
00241 *          if not they will be reduced mod 4096.  Also, ISEED(4) must
00242 *          be odd.  The random number generator uses a linear
00243 *          congruential sequence limited to small integers, and so
00244 *          should produce machine independent random numbers. The
00245 *          values of ISEED are changed on exit, and can be used in the
00246 *          next call to SDRVVX to continue the same random number
00247 *          sequence.
00248 *
00249 *  THRESH  (input) REAL
00250 *          A test will count as "failed" if the "error", computed as
00251 *          described above, exceeds THRESH.  Note that the error
00252 *          is scaled to be O(1), so THRESH should be a reasonably
00253 *          small multiple of 1, e.g., 10 or 100.  In particular,
00254 *          it should not depend on the precision (single vs. double)
00255 *          or the size of the matrix.  It must be at least zero.
00256 *
00257 *  NIUNIT  (input) INTEGER
00258 *          The FORTRAN unit number for reading in the data file of
00259 *          problems to solve.
00260 *
00261 *  NOUNIT  (input) INTEGER
00262 *          The FORTRAN unit number for printing out error messages
00263 *          (e.g., if a routine returns INFO not equal to 0.)
00264 *
00265 *  A       (workspace) REAL array, dimension
00266 *                      (LDA, max(NN,12))
00267 *          Used to hold the matrix whose eigenvalues are to be
00268 *          computed.  On exit, A contains the last matrix actually used.
00269 *
00270 *  LDA     (input) INTEGER
00271 *          The leading dimension of the arrays A and H.
00272 *          LDA >= max(NN,12), since 12 is the dimension of the largest
00273 *          matrix in the precomputed input file.
00274 *
00275 *  H       (workspace) REAL array, dimension
00276 *                      (LDA, max(NN,12))
00277 *          Another copy of the test matrix A, modified by SGEEVX.
00278 *
00279 *  WR      (workspace) REAL array, dimension (max(NN))
00280 *  WI      (workspace) REAL array, dimension (max(NN))
00281 *          The real and imaginary parts of the eigenvalues of A.
00282 *          On exit, WR + WI*i are the eigenvalues of the matrix in A.
00283 *
00284 *  WR1     (workspace) REAL array, dimension (max(NN,12))
00285 *  WI1     (workspace) REAL array, dimension (max(NN,12))
00286 *          Like WR, WI, these arrays contain the eigenvalues of A,
00287 *          but those computed when SGEEVX only computes a partial
00288 *          eigendecomposition, i.e. not the eigenvalues and left
00289 *          and right eigenvectors.
00290 *
00291 *  VL      (workspace) REAL array, dimension
00292 *                      (LDVL, max(NN,12))
00293 *          VL holds the computed left eigenvectors.
00294 *
00295 *  LDVL    (input) INTEGER
00296 *          Leading dimension of VL. Must be at least max(1,max(NN,12)).
00297 *
00298 *  VR      (workspace) REAL array, dimension
00299 *                      (LDVR, max(NN,12))
00300 *          VR holds the computed right eigenvectors.
00301 *
00302 *  LDVR    (input) INTEGER
00303 *          Leading dimension of VR. Must be at least max(1,max(NN,12)).
00304 *
00305 *  LRE     (workspace) REAL array, dimension
00306 *                      (LDLRE, max(NN,12))
00307 *          LRE holds the computed right or left eigenvectors.
00308 *
00309 *  LDLRE   (input) INTEGER
00310 *          Leading dimension of LRE. Must be at least max(1,max(NN,12))
00311 *
00312 *  RCONDV  (workspace) REAL array, dimension (N)
00313 *          RCONDV holds the computed reciprocal condition numbers
00314 *          for eigenvectors.
00315 *
00316 *  RCNDV1  (workspace) REAL array, dimension (N)
00317 *          RCNDV1 holds more computed reciprocal condition numbers
00318 *          for eigenvectors.
00319 *
00320 *  RCDVIN  (workspace) REAL array, dimension (N)
00321 *          When COMP = .TRUE. RCDVIN holds the precomputed reciprocal
00322 *          condition numbers for eigenvectors to be compared with
00323 *          RCONDV.
00324 *
00325 *  RCONDE  (workspace) REAL array, dimension (N)
00326 *          RCONDE holds the computed reciprocal condition numbers
00327 *          for eigenvalues.
00328 *
00329 *  RCNDE1  (workspace) REAL array, dimension (N)
00330 *          RCNDE1 holds more computed reciprocal condition numbers
00331 *          for eigenvalues.
00332 *
00333 *  RCDEIN  (workspace) REAL array, dimension (N)
00334 *          When COMP = .TRUE. RCDEIN holds the precomputed reciprocal
00335 *          condition numbers for eigenvalues to be compared with
00336 *          RCONDE.
00337 *
00338 *  RESULT  (output) REAL array, dimension (11)
00339 *          The values computed by the seven tests described above.
00340 *          The values are currently limited to 1/ulp, to avoid overflow.
00341 *
00342 *  WORK    (workspace) REAL array, dimension (NWORK)
00343 *
00344 *  NWORK   (input) INTEGER
00345 *          The number of entries in WORK.  This must be at least
00346 *          max(6*12+2*12**2,6*NN(j)+2*NN(j)**2) =
00347 *          max(    360     ,6*NN(j)+2*NN(j)**2)    for all j.
00348 *
00349 *  IWORK   (workspace) INTEGER array, dimension (2*max(NN,12))
00350 *
00351 *  INFO    (output) INTEGER
00352 *          If 0,  then successful exit.
00353 *          If <0, then input paramter -INFO is incorrect.
00354 *          If >0, SLATMR, SLATMS, SLATME or SGET23 returned an error
00355 *                 code, and INFO is its absolute value.
00356 *
00357 *-----------------------------------------------------------------------
00358 *
00359 *     Some Local Variables and Parameters:
00360 *     ---- ----- --------- --- ----------
00361 *
00362 *     ZERO, ONE       Real 0 and 1.
00363 *     MAXTYP          The number of types defined.
00364 *     NMAX            Largest value in NN or 12.
00365 *     NERRS           The number of tests which have exceeded THRESH
00366 *     COND, CONDS,
00367 *     IMODE           Values to be passed to the matrix generators.
00368 *     ANORM           Norm of A; passed to matrix generators.
00369 *
00370 *     OVFL, UNFL      Overflow and underflow thresholds.
00371 *     ULP, ULPINV     Finest relative precision and its inverse.
00372 *     RTULP, RTULPI   Square roots of the previous 4 values.
00373 *
00374 *             The following four arrays decode JTYPE:
00375 *     KTYPE(j)        The general type (1-10) for type "j".
00376 *     KMODE(j)        The MODE value to be passed to the matrix
00377 *                     generator for type "j".
00378 *     KMAGN(j)        The order of magnitude ( O(1),
00379 *                     O(overflow^(1/2) ), O(underflow^(1/2) )
00380 *     KCONDS(j)       Selectw whether CONDS is to be 1 or
00381 *                     1/sqrt(ulp).  (0 means irrelevant.)
00382 *
00383 *  =====================================================================
00384 *
00385 *     .. Parameters ..
00386       REAL               ZERO, ONE
00387       PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
00388       INTEGER            MAXTYP
00389       PARAMETER          ( MAXTYP = 21 )
00390 *     ..
00391 *     .. Local Scalars ..
00392       LOGICAL            BADNN
00393       CHARACTER          BALANC
00394       CHARACTER*3        PATH
00395       INTEGER            I, IBAL, IINFO, IMODE, ITYPE, IWK, J, JCOL,
00396      $                   JSIZE, JTYPE, MTYPES, N, NERRS, NFAIL,
00397      $                   NMAX, NNWORK, NTEST, NTESTF, NTESTT
00398       REAL               ANORM, COND, CONDS, OVFL, RTULP, RTULPI, ULP,
00399      $                   ULPINV, UNFL
00400 *     ..
00401 *     .. Local Arrays ..
00402       CHARACTER          ADUMMA( 1 ), BAL( 4 )
00403       INTEGER            IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ),
00404      $                   KMAGN( MAXTYP ), KMODE( MAXTYP ),
00405      $                   KTYPE( MAXTYP )
00406 *     ..
00407 *     .. External Functions ..
00408       REAL               SLAMCH
00409       EXTERNAL           SLAMCH
00410 *     ..
00411 *     .. External Subroutines ..
00412       EXTERNAL           SGET23, SLABAD, SLASUM, SLATME, SLATMR, SLATMS,
00413      $                   SLASET, XERBLA
00414 *     ..
00415 *     .. Intrinsic Functions ..
00416       INTRINSIC          ABS, MAX, MIN, SQRT
00417 *     ..
00418 *     .. Data statements ..
00419       DATA               KTYPE / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 /
00420       DATA               KMAGN / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2,
00421      $                   3, 1, 2, 3 /
00422       DATA               KMODE / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3,
00423      $                   1, 5, 5, 5, 4, 3, 1 /
00424       DATA               KCONDS / 3*0, 5*0, 4*1, 6*2, 3*0 /
00425       DATA               BAL / 'N', 'P', 'S', 'B' /
00426 *     ..
00427 *     .. Executable Statements ..
00428 *
00429       PATH( 1: 1 ) = 'Single precision'
00430       PATH( 2: 3 ) = 'VX'
00431 *
00432 *     Check for errors
00433 *
00434       NTESTT = 0
00435       NTESTF = 0
00436       INFO = 0
00437 *
00438 *     Important constants
00439 *
00440       BADNN = .FALSE.
00441 *
00442 *     12 is the largest dimension in the input file of precomputed
00443 *     problems
00444 *
00445       NMAX = 12
00446       DO 10 J = 1, NSIZES
00447          NMAX = MAX( NMAX, NN( J ) )
00448          IF( NN( J ).LT.0 )
00449      $      BADNN = .TRUE.
00450    10 CONTINUE
00451 *
00452 *     Check for errors
00453 *
00454       IF( NSIZES.LT.0 ) THEN
00455          INFO = -1
00456       ELSE IF( BADNN ) THEN
00457          INFO = -2
00458       ELSE IF( NTYPES.LT.0 ) THEN
00459          INFO = -3
00460       ELSE IF( THRESH.LT.ZERO ) THEN
00461          INFO = -6
00462       ELSE IF( LDA.LT.1 .OR. LDA.LT.NMAX ) THEN
00463          INFO = -10
00464       ELSE IF( LDVL.LT.1 .OR. LDVL.LT.NMAX ) THEN
00465          INFO = -17
00466       ELSE IF( LDVR.LT.1 .OR. LDVR.LT.NMAX ) THEN
00467          INFO = -19
00468       ELSE IF( LDLRE.LT.1 .OR. LDLRE.LT.NMAX ) THEN
00469          INFO = -21
00470       ELSE IF( 6*NMAX+2*NMAX**2.GT.NWORK ) THEN
00471          INFO = -32
00472       END IF
00473 *
00474       IF( INFO.NE.0 ) THEN
00475          CALL XERBLA( 'SDRVVX', -INFO )
00476          RETURN
00477       END IF
00478 *
00479 *     If nothing to do check on NIUNIT
00480 *
00481       IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
00482      $   GO TO 160
00483 *
00484 *     More Important constants
00485 *
00486       UNFL = SLAMCH( 'Safe minimum' )
00487       OVFL = ONE / UNFL
00488       CALL SLABAD( UNFL, OVFL )
00489       ULP = SLAMCH( 'Precision' )
00490       ULPINV = ONE / ULP
00491       RTULP = SQRT( ULP )
00492       RTULPI = ONE / RTULP
00493 *
00494 *     Loop over sizes, types
00495 *
00496       NERRS = 0
00497 *
00498       DO 150 JSIZE = 1, NSIZES
00499          N = NN( JSIZE )
00500          IF( NSIZES.NE.1 ) THEN
00501             MTYPES = MIN( MAXTYP, NTYPES )
00502          ELSE
00503             MTYPES = MIN( MAXTYP+1, NTYPES )
00504          END IF
00505 *
00506          DO 140 JTYPE = 1, MTYPES
00507             IF( .NOT.DOTYPE( JTYPE ) )
00508      $         GO TO 140
00509 *
00510 *           Save ISEED in case of an error.
00511 *
00512             DO 20 J = 1, 4
00513                IOLDSD( J ) = ISEED( J )
00514    20       CONTINUE
00515 *
00516 *           Compute "A"
00517 *
00518 *           Control parameters:
00519 *
00520 *           KMAGN  KCONDS  KMODE        KTYPE
00521 *       =1  O(1)   1       clustered 1  zero
00522 *       =2  large  large   clustered 2  identity
00523 *       =3  small          exponential  Jordan
00524 *       =4                 arithmetic   diagonal, (w/ eigenvalues)
00525 *       =5                 random log   symmetric, w/ eigenvalues
00526 *       =6                 random       general, w/ eigenvalues
00527 *       =7                              random diagonal
00528 *       =8                              random symmetric
00529 *       =9                              random general
00530 *       =10                             random triangular
00531 *
00532             IF( MTYPES.GT.MAXTYP )
00533      $         GO TO 90
00534 *
00535             ITYPE = KTYPE( JTYPE )
00536             IMODE = KMODE( JTYPE )
00537 *
00538 *           Compute norm
00539 *
00540             GO TO ( 30, 40, 50 )KMAGN( JTYPE )
00541 *
00542    30       CONTINUE
00543             ANORM = ONE
00544             GO TO 60
00545 *
00546    40       CONTINUE
00547             ANORM = OVFL*ULP
00548             GO TO 60
00549 *
00550    50       CONTINUE
00551             ANORM = UNFL*ULPINV
00552             GO TO 60
00553 *
00554    60       CONTINUE
00555 *
00556             CALL SLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
00557             IINFO = 0
00558             COND = ULPINV
00559 *
00560 *           Special Matrices -- Identity & Jordan block
00561 *
00562 *              Zero
00563 *
00564             IF( ITYPE.EQ.1 ) THEN
00565                IINFO = 0
00566 *
00567             ELSE IF( ITYPE.EQ.2 ) THEN
00568 *
00569 *              Identity
00570 *
00571                DO 70 JCOL = 1, N
00572                   A( JCOL, JCOL ) = ANORM
00573    70          CONTINUE
00574 *
00575             ELSE IF( ITYPE.EQ.3 ) THEN
00576 *
00577 *              Jordan Block
00578 *
00579                DO 80 JCOL = 1, N
00580                   A( JCOL, JCOL ) = ANORM
00581                   IF( JCOL.GT.1 )
00582      $               A( JCOL, JCOL-1 ) = ONE
00583    80          CONTINUE
00584 *
00585             ELSE IF( ITYPE.EQ.4 ) THEN
00586 *
00587 *              Diagonal Matrix, [Eigen]values Specified
00588 *
00589                CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
00590      $                      ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
00591      $                      IINFO )
00592 *
00593             ELSE IF( ITYPE.EQ.5 ) THEN
00594 *
00595 *              Symmetric, eigenvalues specified
00596 *
00597                CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
00598      $                      ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
00599      $                      IINFO )
00600 *
00601             ELSE IF( ITYPE.EQ.6 ) THEN
00602 *
00603 *              General, eigenvalues specified
00604 *
00605                IF( KCONDS( JTYPE ).EQ.1 ) THEN
00606                   CONDS = ONE
00607                ELSE IF( KCONDS( JTYPE ).EQ.2 ) THEN
00608                   CONDS = RTULPI
00609                ELSE
00610                   CONDS = ZERO
00611                END IF
00612 *
00613                ADUMMA( 1 ) = ' '
00614                CALL SLATME( N, 'S', ISEED, WORK, IMODE, COND, ONE,
00615      $                      ADUMMA, 'T', 'T', 'T', WORK( N+1 ), 4,
00616      $                      CONDS, N, N, ANORM, A, LDA, WORK( 2*N+1 ),
00617      $                      IINFO )
00618 *
00619             ELSE IF( ITYPE.EQ.7 ) THEN
00620 *
00621 *              Diagonal, random eigenvalues
00622 *
00623                CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
00624      $                      'T', 'N', WORK( N+1 ), 1, ONE,
00625      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
00626      $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
00627 *
00628             ELSE IF( ITYPE.EQ.8 ) THEN
00629 *
00630 *              Symmetric, random eigenvalues
00631 *
00632                CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
00633      $                      'T', 'N', WORK( N+1 ), 1, ONE,
00634      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
00635      $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
00636 *
00637             ELSE IF( ITYPE.EQ.9 ) THEN
00638 *
00639 *              General, random eigenvalues
00640 *
00641                CALL SLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
00642      $                      'T', 'N', WORK( N+1 ), 1, ONE,
00643      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
00644      $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
00645                IF( N.GE.4 ) THEN
00646                   CALL SLASET( 'Full', 2, N, ZERO, ZERO, A, LDA )
00647                   CALL SLASET( 'Full', N-3, 1, ZERO, ZERO, A( 3, 1 ),
00648      $                         LDA )
00649                   CALL SLASET( 'Full', N-3, 2, ZERO, ZERO, A( 3, N-1 ),
00650      $                         LDA )
00651                   CALL SLASET( 'Full', 1, N, ZERO, ZERO, A( N, 1 ),
00652      $                         LDA )
00653                END IF
00654 *
00655             ELSE IF( ITYPE.EQ.10 ) THEN
00656 *
00657 *              Triangular, random eigenvalues
00658 *
00659                CALL SLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
00660      $                      'T', 'N', WORK( N+1 ), 1, ONE,
00661      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, 0,
00662      $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
00663 *
00664             ELSE
00665 *
00666                IINFO = 1
00667             END IF
00668 *
00669             IF( IINFO.NE.0 ) THEN
00670                WRITE( NOUNIT, FMT = 9992 )'Generator', IINFO, N, JTYPE,
00671      $            IOLDSD
00672                INFO = ABS( IINFO )
00673                RETURN
00674             END IF
00675 *
00676    90       CONTINUE
00677 *
00678 *           Test for minimal and generous workspace
00679 *
00680             DO 130 IWK = 1, 3
00681                IF( IWK.EQ.1 ) THEN
00682                   NNWORK = 3*N
00683                ELSE IF( IWK.EQ.2 ) THEN
00684                   NNWORK = 6*N + N**2
00685                ELSE
00686                   NNWORK = 6*N + 2*N**2
00687                END IF
00688                NNWORK = MAX( NNWORK, 1 )
00689 *
00690 *              Test for all balancing options
00691 *
00692                DO 120 IBAL = 1, 4
00693                   BALANC = BAL( IBAL )
00694 *
00695 *                 Perform tests
00696 *
00697                   CALL SGET23( .FALSE., BALANC, JTYPE, THRESH, IOLDSD,
00698      $                         NOUNIT, N, A, LDA, H, WR, WI, WR1, WI1,
00699      $                         VL, LDVL, VR, LDVR, LRE, LDLRE, RCONDV,
00700      $                         RCNDV1, RCDVIN, RCONDE, RCNDE1, RCDEIN,
00701      $                         SCALE, SCALE1, RESULT, WORK, NNWORK,
00702      $                         IWORK, INFO )
00703 *
00704 *                 Check for RESULT(j) > THRESH
00705 *
00706                   NTEST = 0
00707                   NFAIL = 0
00708                   DO 100 J = 1, 9
00709                      IF( RESULT( J ).GE.ZERO )
00710      $                  NTEST = NTEST + 1
00711                      IF( RESULT( J ).GE.THRESH )
00712      $                  NFAIL = NFAIL + 1
00713   100             CONTINUE
00714 *
00715                   IF( NFAIL.GT.0 )
00716      $               NTESTF = NTESTF + 1
00717                   IF( NTESTF.EQ.1 ) THEN
00718                      WRITE( NOUNIT, FMT = 9999 )PATH
00719                      WRITE( NOUNIT, FMT = 9998 )
00720                      WRITE( NOUNIT, FMT = 9997 )
00721                      WRITE( NOUNIT, FMT = 9996 )
00722                      WRITE( NOUNIT, FMT = 9995 )THRESH
00723                      NTESTF = 2
00724                   END IF
00725 *
00726                   DO 110 J = 1, 9
00727                      IF( RESULT( J ).GE.THRESH ) THEN
00728                         WRITE( NOUNIT, FMT = 9994 )BALANC, N, IWK,
00729      $                     IOLDSD, JTYPE, J, RESULT( J )
00730                      END IF
00731   110             CONTINUE
00732 *
00733                   NERRS = NERRS + NFAIL
00734                   NTESTT = NTESTT + NTEST
00735 *
00736   120          CONTINUE
00737   130       CONTINUE
00738   140    CONTINUE
00739   150 CONTINUE
00740 *
00741   160 CONTINUE
00742 *
00743 *     Read in data from file to check accuracy of condition estimation.
00744 *     Assume input eigenvalues are sorted lexicographically (increasing
00745 *     by real part, then decreasing by imaginary part)
00746 *
00747       JTYPE = 0
00748   170 CONTINUE
00749       READ( NIUNIT, FMT = *, END = 220 )N
00750 *
00751 *     Read input data until N=0
00752 *
00753       IF( N.EQ.0 )
00754      $   GO TO 220
00755       JTYPE = JTYPE + 1
00756       ISEED( 1 ) = JTYPE
00757       DO 180 I = 1, N
00758          READ( NIUNIT, FMT = * )( A( I, J ), J = 1, N )
00759   180 CONTINUE
00760       DO 190 I = 1, N
00761          READ( NIUNIT, FMT = * )WR1( I ), WI1( I ), RCDEIN( I ),
00762      $      RCDVIN( I )
00763   190 CONTINUE
00764       CALL SGET23( .TRUE., 'N', 22, THRESH, ISEED, NOUNIT, N, A, LDA, H,
00765      $             WR, WI, WR1, WI1, VL, LDVL, VR, LDVR, LRE, LDLRE,
00766      $             RCONDV, RCNDV1, RCDVIN, RCONDE, RCNDE1, RCDEIN,
00767      $             SCALE, SCALE1, RESULT, WORK, 6*N+2*N**2, IWORK,
00768      $             INFO )
00769 *
00770 *     Check for RESULT(j) > THRESH
00771 *
00772       NTEST = 0
00773       NFAIL = 0
00774       DO 200 J = 1, 11
00775          IF( RESULT( J ).GE.ZERO )
00776      $      NTEST = NTEST + 1
00777          IF( RESULT( J ).GE.THRESH )
00778      $      NFAIL = NFAIL + 1
00779   200 CONTINUE
00780 *
00781       IF( NFAIL.GT.0 )
00782      $   NTESTF = NTESTF + 1
00783       IF( NTESTF.EQ.1 ) THEN
00784          WRITE( NOUNIT, FMT = 9999 )PATH
00785          WRITE( NOUNIT, FMT = 9998 )
00786          WRITE( NOUNIT, FMT = 9997 )
00787          WRITE( NOUNIT, FMT = 9996 )
00788          WRITE( NOUNIT, FMT = 9995 )THRESH
00789          NTESTF = 2
00790       END IF
00791 *
00792       DO 210 J = 1, 11
00793          IF( RESULT( J ).GE.THRESH ) THEN
00794             WRITE( NOUNIT, FMT = 9993 )N, JTYPE, J, RESULT( J )
00795          END IF
00796   210 CONTINUE
00797 *
00798       NERRS = NERRS + NFAIL
00799       NTESTT = NTESTT + NTEST
00800       GO TO 170
00801   220 CONTINUE
00802 *
00803 *     Summary
00804 *
00805       CALL SLASUM( PATH, NOUNIT, NERRS, NTESTT )
00806 *
00807  9999 FORMAT( / 1X, A3, ' -- Real Eigenvalue-Eigenvector Decomposition',
00808      $      ' Expert Driver', /
00809      $      ' Matrix types (see SDRVVX for details): ' )
00810 *
00811  9998 FORMAT( / ' Special Matrices:', / '  1=Zero matrix.             ',
00812      $      '           ', '  5=Diagonal: geometr. spaced entries.',
00813      $      / '  2=Identity matrix.                    ', '  6=Diagona',
00814      $      'l: clustered entries.', / '  3=Transposed Jordan block.  ',
00815      $      '          ', '  7=Diagonal: large, evenly spaced.', / '  ',
00816      $      '4=Diagonal: evenly spaced entries.    ', '  8=Diagonal: s',
00817      $      'mall, evenly spaced.' )
00818  9997 FORMAT( ' Dense, Non-Symmetric Matrices:', / '  9=Well-cond., ev',
00819      $      'enly spaced eigenvals.', ' 14=Ill-cond., geomet. spaced e',
00820      $      'igenals.', / ' 10=Well-cond., geom. spaced eigenvals. ',
00821      $      ' 15=Ill-conditioned, clustered e.vals.', / ' 11=Well-cond',
00822      $      'itioned, clustered e.vals. ', ' 16=Ill-cond., random comp',
00823      $      'lex ', / ' 12=Well-cond., random complex ', '         ',
00824      $      ' 17=Ill-cond., large rand. complx ', / ' 13=Ill-condi',
00825      $      'tioned, evenly spaced.     ', ' 18=Ill-cond., small rand.',
00826      $      ' complx ' )
00827  9996 FORMAT( ' 19=Matrix with random O(1) entries.    ', ' 21=Matrix ',
00828      $      'with small random entries.', / ' 20=Matrix with large ran',
00829      $      'dom entries.   ', ' 22=Matrix read from input file', / )
00830  9995 FORMAT( ' Tests performed with test threshold =', F8.2,
00831      $      / / ' 1 = | A VR - VR W | / ( n |A| ulp ) ',
00832      $      / ' 2 = | transpose(A) VL - VL W | / ( n |A| ulp ) ',
00833      $      / ' 3 = | |VR(i)| - 1 | / ulp ',
00834      $      / ' 4 = | |VL(i)| - 1 | / ulp ',
00835      $      / ' 5 = 0 if W same no matter if VR or VL computed,',
00836      $      ' 1/ulp otherwise', /
00837      $      ' 6 = 0 if VR same no matter what else computed,',
00838      $      '  1/ulp otherwise', /
00839      $      ' 7 = 0 if VL same no matter what else computed,',
00840      $      '  1/ulp otherwise', /
00841      $      ' 8 = 0 if RCONDV same no matter what else computed,',
00842      $      '  1/ulp otherwise', /
00843      $      ' 9 = 0 if SCALE, ILO, IHI, ABNRM same no matter what else',
00844      $      ' computed,  1/ulp otherwise',
00845      $      / ' 10 = | RCONDV - RCONDV(precomputed) | / cond(RCONDV),',
00846      $      / ' 11 = | RCONDE - RCONDE(precomputed) | / cond(RCONDE),' )
00847  9994 FORMAT( ' BALANC=''', A1, ''',N=', I4, ',IWK=', I1, ', seed=',
00848      $      4( I4, ',' ), ' type ', I2, ', test(', I2, ')=', G10.3 )
00849  9993 FORMAT( ' N=', I5, ', input example =', I3, ',  test(', I2, ')=',
00850      $      G10.3 )
00851  9992 FORMAT( ' SDRVVX: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
00852      $      I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
00853 *
00854       RETURN
00855 *
00856 *     End of SDRVVX
00857 *
00858       END
 All Files Functions