LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE SSTT21( N, KBAND, AD, AE, SD, SE, U, LDU, WORK, 00002 $ RESULT ) 00003 * 00004 * -- LAPACK test routine (version 3.1) -- 00005 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 00006 * November 2006 00007 * 00008 * .. Scalar Arguments .. 00009 INTEGER KBAND, LDU, N 00010 * .. 00011 * .. Array Arguments .. 00012 REAL AD( * ), AE( * ), RESULT( 2 ), SD( * ), 00013 $ SE( * ), U( LDU, * ), WORK( * ) 00014 * .. 00015 * 00016 * Purpose 00017 * ======= 00018 * 00019 * SSTT21 checks a decomposition of the form 00020 * 00021 * A = U S U' 00022 * 00023 * where ' means transpose, A is symmetric tridiagonal, U is orthogonal, 00024 * and S is diagonal (if KBAND=0) or symmetric tridiagonal (if KBAND=1). 00025 * Two tests are performed: 00026 * 00027 * RESULT(1) = | A - U S U' | / ( |A| n ulp ) 00028 * 00029 * RESULT(2) = | I - UU' | / ( n ulp ) 00030 * 00031 * Arguments 00032 * ========= 00033 * 00034 * N (input) INTEGER 00035 * The size of the matrix. If it is zero, SSTT21 does nothing. 00036 * It must be at least zero. 00037 * 00038 * KBAND (input) INTEGER 00039 * The bandwidth of the matrix S. It may only be zero or one. 00040 * If zero, then S is diagonal, and SE is not referenced. If 00041 * one, then S is symmetric tri-diagonal. 00042 * 00043 * AD (input) REAL array, dimension (N) 00044 * The diagonal of the original (unfactored) matrix A. A is 00045 * assumed to be symmetric tridiagonal. 00046 * 00047 * AE (input) REAL array, dimension (N-1) 00048 * The off-diagonal of the original (unfactored) matrix A. A 00049 * is assumed to be symmetric tridiagonal. AE(1) is the (1,2) 00050 * and (2,1) element, AE(2) is the (2,3) and (3,2) element, etc. 00051 * 00052 * SD (input) REAL array, dimension (N) 00053 * The diagonal of the (symmetric tri-) diagonal matrix S. 00054 * 00055 * SE (input) REAL array, dimension (N-1) 00056 * The off-diagonal of the (symmetric tri-) diagonal matrix S. 00057 * Not referenced if KBSND=0. If KBAND=1, then AE(1) is the 00058 * (1,2) and (2,1) element, SE(2) is the (2,3) and (3,2) 00059 * element, etc. 00060 * 00061 * U (input) REAL array, dimension (LDU, N) 00062 * The orthogonal matrix in the decomposition. 00063 * 00064 * LDU (input) INTEGER 00065 * The leading dimension of U. LDU must be at least N. 00066 * 00067 * WORK (workspace) REAL array, dimension (N*(N+1)) 00068 * 00069 * RESULT (output) REAL array, dimension (2) 00070 * The values computed by the two tests described above. The 00071 * values are currently limited to 1/ulp, to avoid overflow. 00072 * RESULT(1) is always modified. 00073 * 00074 * ===================================================================== 00075 * 00076 * .. Parameters .. 00077 REAL ZERO, ONE 00078 PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) 00079 * .. 00080 * .. Local Scalars .. 00081 INTEGER J 00082 REAL ANORM, TEMP1, TEMP2, ULP, UNFL, WNORM 00083 * .. 00084 * .. External Functions .. 00085 REAL SLAMCH, SLANGE, SLANSY 00086 EXTERNAL SLAMCH, SLANGE, SLANSY 00087 * .. 00088 * .. External Subroutines .. 00089 EXTERNAL SGEMM, SLASET, SSYR, SSYR2 00090 * .. 00091 * .. Intrinsic Functions .. 00092 INTRINSIC ABS, MAX, MIN, REAL 00093 * .. 00094 * .. Executable Statements .. 00095 * 00096 * 1) Constants 00097 * 00098 RESULT( 1 ) = ZERO 00099 RESULT( 2 ) = ZERO 00100 IF( N.LE.0 ) 00101 $ RETURN 00102 * 00103 UNFL = SLAMCH( 'Safe minimum' ) 00104 ULP = SLAMCH( 'Precision' ) 00105 * 00106 * Do Test 1 00107 * 00108 * Copy A & Compute its 1-Norm: 00109 * 00110 CALL SLASET( 'Full', N, N, ZERO, ZERO, WORK, N ) 00111 * 00112 ANORM = ZERO 00113 TEMP1 = ZERO 00114 * 00115 DO 10 J = 1, N - 1 00116 WORK( ( N+1 )*( J-1 )+1 ) = AD( J ) 00117 WORK( ( N+1 )*( J-1 )+2 ) = AE( J ) 00118 TEMP2 = ABS( AE( J ) ) 00119 ANORM = MAX( ANORM, ABS( AD( J ) )+TEMP1+TEMP2 ) 00120 TEMP1 = TEMP2 00121 10 CONTINUE 00122 * 00123 WORK( N**2 ) = AD( N ) 00124 ANORM = MAX( ANORM, ABS( AD( N ) )+TEMP1, UNFL ) 00125 * 00126 * Norm of A - USU' 00127 * 00128 DO 20 J = 1, N 00129 CALL SSYR( 'L', N, -SD( J ), U( 1, J ), 1, WORK, N ) 00130 20 CONTINUE 00131 * 00132 IF( N.GT.1 .AND. KBAND.EQ.1 ) THEN 00133 DO 30 J = 1, N - 1 00134 CALL SSYR2( 'L', N, -SE( J ), U( 1, J ), 1, U( 1, J+1 ), 1, 00135 $ WORK, N ) 00136 30 CONTINUE 00137 END IF 00138 * 00139 WNORM = SLANSY( '1', 'L', N, WORK, N, WORK( N**2+1 ) ) 00140 * 00141 IF( ANORM.GT.WNORM ) THEN 00142 RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP ) 00143 ELSE 00144 IF( ANORM.LT.ONE ) THEN 00145 RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP ) 00146 ELSE 00147 RESULT( 1 ) = MIN( WNORM / ANORM, REAL( N ) ) / ( N*ULP ) 00148 END IF 00149 END IF 00150 * 00151 * Do Test 2 00152 * 00153 * Compute UU' - I 00154 * 00155 CALL SGEMM( 'N', 'C', N, N, N, ONE, U, LDU, U, LDU, ZERO, WORK, 00156 $ N ) 00157 * 00158 DO 40 J = 1, N 00159 WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - ONE 00160 40 CONTINUE 00161 * 00162 RESULT( 2 ) = MIN( REAL( N ), SLANGE( '1', N, N, WORK, N, 00163 $ WORK( N**2+1 ) ) ) / ( N*ULP ) 00164 * 00165 RETURN 00166 * 00167 * End of SSTT21 00168 * 00169 END