LAPACK 3.3.1
Linear Algebra PACKage
|
00001 DOUBLE PRECISION FUNCTION DLA_SYRCOND( UPLO, N, A, LDA, AF, LDAF, 00002 $ IPIV, CMODE, C, INFO, WORK, 00003 $ IWORK ) 00004 * 00005 * -- LAPACK routine (version 3.2.1) -- 00006 * -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- 00007 * -- Jason Riedy of Univ. of California Berkeley. -- 00008 * -- April 2009 -- 00009 * 00010 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00011 * -- Univ. of California Berkeley and NAG Ltd. -- 00012 * 00013 IMPLICIT NONE 00014 * .. 00015 * .. Scalar Arguments .. 00016 CHARACTER UPLO 00017 INTEGER N, LDA, LDAF, INFO, CMODE 00018 * .. 00019 * .. Array Arguments 00020 INTEGER IWORK( * ), IPIV( * ) 00021 DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), WORK( * ), C( * ) 00022 * .. 00023 * 00024 * Purpose 00025 * ======= 00026 * 00027 * DLA_SYRCOND estimates the Skeel condition number of op(A) * op2(C) 00028 * where op2 is determined by CMODE as follows 00029 * CMODE = 1 op2(C) = C 00030 * CMODE = 0 op2(C) = I 00031 * CMODE = -1 op2(C) = inv(C) 00032 * The Skeel condition number cond(A) = norminf( |inv(A)||A| ) 00033 * is computed by computing scaling factors R such that 00034 * diag(R)*A*op2(C) is row equilibrated and computing the standard 00035 * infinity-norm condition number. 00036 * 00037 * Arguments 00038 * ========== 00039 * 00040 * UPLO (input) CHARACTER*1 00041 * = 'U': Upper triangle of A is stored; 00042 * = 'L': Lower triangle of A is stored. 00043 * 00044 * N (input) INTEGER 00045 * The number of linear equations, i.e., the order of the 00046 * matrix A. N >= 0. 00047 * 00048 * A (input) DOUBLE PRECISION array, dimension (LDA,N) 00049 * On entry, the N-by-N matrix A. 00050 * 00051 * LDA (input) INTEGER 00052 * The leading dimension of the array A. LDA >= max(1,N). 00053 * 00054 * AF (input) DOUBLE PRECISION array, dimension (LDAF,N) 00055 * The block diagonal matrix D and the multipliers used to 00056 * obtain the factor U or L as computed by DSYTRF. 00057 * 00058 * LDAF (input) INTEGER 00059 * The leading dimension of the array AF. LDAF >= max(1,N). 00060 * 00061 * IPIV (input) INTEGER array, dimension (N) 00062 * Details of the interchanges and the block structure of D 00063 * as determined by DSYTRF. 00064 * 00065 * CMODE (input) INTEGER 00066 * Determines op2(C) in the formula op(A) * op2(C) as follows: 00067 * CMODE = 1 op2(C) = C 00068 * CMODE = 0 op2(C) = I 00069 * CMODE = -1 op2(C) = inv(C) 00070 * 00071 * C (input) DOUBLE PRECISION array, dimension (N) 00072 * The vector C in the formula op(A) * op2(C). 00073 * 00074 * INFO (output) INTEGER 00075 * = 0: Successful exit. 00076 * i > 0: The ith argument is invalid. 00077 * 00078 * WORK (input) DOUBLE PRECISION array, dimension (3*N). 00079 * Workspace. 00080 * 00081 * IWORK (input) INTEGER array, dimension (N). 00082 * Workspace. 00083 * 00084 * ===================================================================== 00085 * 00086 * .. Local Scalars .. 00087 CHARACTER NORMIN 00088 INTEGER KASE, I, J 00089 DOUBLE PRECISION AINVNM, SMLNUM, TMP 00090 LOGICAL UP 00091 * .. 00092 * .. Local Arrays .. 00093 INTEGER ISAVE( 3 ) 00094 * .. 00095 * .. External Functions .. 00096 LOGICAL LSAME 00097 INTEGER IDAMAX 00098 DOUBLE PRECISION DLAMCH 00099 EXTERNAL LSAME, IDAMAX, DLAMCH 00100 * .. 00101 * .. External Subroutines .. 00102 EXTERNAL DLACN2, DLATRS, DRSCL, XERBLA, DSYTRS 00103 * .. 00104 * .. Intrinsic Functions .. 00105 INTRINSIC ABS, MAX 00106 * .. 00107 * .. Executable Statements .. 00108 * 00109 DLA_SYRCOND = 0.0D+0 00110 * 00111 INFO = 0 00112 IF( N.LT.0 ) THEN 00113 INFO = -2 00114 END IF 00115 IF( INFO.NE.0 ) THEN 00116 CALL XERBLA( 'DLA_SYRCOND', -INFO ) 00117 RETURN 00118 END IF 00119 IF( N.EQ.0 ) THEN 00120 DLA_SYRCOND = 1.0D+0 00121 RETURN 00122 END IF 00123 UP = .FALSE. 00124 IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE. 00125 * 00126 * Compute the equilibration matrix R such that 00127 * inv(R)*A*C has unit 1-norm. 00128 * 00129 IF ( UP ) THEN 00130 DO I = 1, N 00131 TMP = 0.0D+0 00132 IF ( CMODE .EQ. 1 ) THEN 00133 DO J = 1, I 00134 TMP = TMP + ABS( A( J, I ) * C( J ) ) 00135 END DO 00136 DO J = I+1, N 00137 TMP = TMP + ABS( A( I, J ) * C( J ) ) 00138 END DO 00139 ELSE IF ( CMODE .EQ. 0 ) THEN 00140 DO J = 1, I 00141 TMP = TMP + ABS( A( J, I ) ) 00142 END DO 00143 DO J = I+1, N 00144 TMP = TMP + ABS( A( I, J ) ) 00145 END DO 00146 ELSE 00147 DO J = 1, I 00148 TMP = TMP + ABS( A( J, I ) / C( J ) ) 00149 END DO 00150 DO J = I+1, N 00151 TMP = TMP + ABS( A( I, J ) / C( J ) ) 00152 END DO 00153 END IF 00154 WORK( 2*N+I ) = TMP 00155 END DO 00156 ELSE 00157 DO I = 1, N 00158 TMP = 0.0D+0 00159 IF ( CMODE .EQ. 1 ) THEN 00160 DO J = 1, I 00161 TMP = TMP + ABS( A( I, J ) * C( J ) ) 00162 END DO 00163 DO J = I+1, N 00164 TMP = TMP + ABS( A( J, I ) * C( J ) ) 00165 END DO 00166 ELSE IF ( CMODE .EQ. 0 ) THEN 00167 DO J = 1, I 00168 TMP = TMP + ABS( A( I, J ) ) 00169 END DO 00170 DO J = I+1, N 00171 TMP = TMP + ABS( A( J, I ) ) 00172 END DO 00173 ELSE 00174 DO J = 1, I 00175 TMP = TMP + ABS( A( I, J) / C( J ) ) 00176 END DO 00177 DO J = I+1, N 00178 TMP = TMP + ABS( A( J, I) / C( J ) ) 00179 END DO 00180 END IF 00181 WORK( 2*N+I ) = TMP 00182 END DO 00183 ENDIF 00184 * 00185 * Estimate the norm of inv(op(A)). 00186 * 00187 SMLNUM = DLAMCH( 'Safe minimum' ) 00188 AINVNM = 0.0D+0 00189 NORMIN = 'N' 00190 00191 KASE = 0 00192 10 CONTINUE 00193 CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE ) 00194 IF( KASE.NE.0 ) THEN 00195 IF( KASE.EQ.2 ) THEN 00196 * 00197 * Multiply by R. 00198 * 00199 DO I = 1, N 00200 WORK( I ) = WORK( I ) * WORK( 2*N+I ) 00201 END DO 00202 00203 IF ( UP ) THEN 00204 CALL DSYTRS( 'U', N, 1, AF, LDAF, IPIV, WORK, N, INFO ) 00205 ELSE 00206 CALL DSYTRS( 'L', N, 1, AF, LDAF, IPIV, WORK, N, INFO ) 00207 ENDIF 00208 * 00209 * Multiply by inv(C). 00210 * 00211 IF ( CMODE .EQ. 1 ) THEN 00212 DO I = 1, N 00213 WORK( I ) = WORK( I ) / C( I ) 00214 END DO 00215 ELSE IF ( CMODE .EQ. -1 ) THEN 00216 DO I = 1, N 00217 WORK( I ) = WORK( I ) * C( I ) 00218 END DO 00219 END IF 00220 ELSE 00221 * 00222 * Multiply by inv(C**T). 00223 * 00224 IF ( CMODE .EQ. 1 ) THEN 00225 DO I = 1, N 00226 WORK( I ) = WORK( I ) / C( I ) 00227 END DO 00228 ELSE IF ( CMODE .EQ. -1 ) THEN 00229 DO I = 1, N 00230 WORK( I ) = WORK( I ) * C( I ) 00231 END DO 00232 END IF 00233 00234 IF ( UP ) THEN 00235 CALL DSYTRS( 'U', N, 1, AF, LDAF, IPIV, WORK, N, INFO ) 00236 ELSE 00237 CALL DSYTRS( 'L', N, 1, AF, LDAF, IPIV, WORK, N, INFO ) 00238 ENDIF 00239 * 00240 * Multiply by R. 00241 * 00242 DO I = 1, N 00243 WORK( I ) = WORK( I ) * WORK( 2*N+I ) 00244 END DO 00245 END IF 00246 * 00247 GO TO 10 00248 END IF 00249 * 00250 * Compute the estimate of the reciprocal condition number. 00251 * 00252 IF( AINVNM .NE. 0.0D+0 ) 00253 $ DLA_SYRCOND = ( 1.0D+0 / AINVNM ) 00254 * 00255 RETURN 00256 * 00257 END