LAPACK 3.3.1
Linear Algebra PACKage

clatrs.f

Go to the documentation of this file.
00001       SUBROUTINE CLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
00002      $                   CNORM, INFO )
00003 *
00004 *  -- LAPACK auxiliary routine (version 3.2) --
00005 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00006 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00007 *     November 2006
00008 *
00009 *     .. Scalar Arguments ..
00010       CHARACTER          DIAG, NORMIN, TRANS, UPLO
00011       INTEGER            INFO, LDA, N
00012       REAL               SCALE
00013 *     ..
00014 *     .. Array Arguments ..
00015       REAL               CNORM( * )
00016       COMPLEX            A( LDA, * ), X( * )
00017 *     ..
00018 *
00019 *  Purpose
00020 *  =======
00021 *
00022 *  CLATRS solves one of the triangular systems
00023 *
00024 *     A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b,
00025 *
00026 *  with scaling to prevent overflow.  Here A is an upper or lower
00027 *  triangular matrix, A**T denotes the transpose of A, A**H denotes the
00028 *  conjugate transpose of A, x and b are n-element vectors, and s is a
00029 *  scaling factor, usually less than or equal to 1, chosen so that the
00030 *  components of x will be less than the overflow threshold.  If the
00031 *  unscaled problem will not cause overflow, the Level 2 BLAS routine
00032 *  CTRSV is called. If the matrix A is singular (A(j,j) = 0 for some j),
00033 *  then s is set to 0 and a non-trivial solution to A*x = 0 is returned.
00034 *
00035 *  Arguments
00036 *  =========
00037 *
00038 *  UPLO    (input) CHARACTER*1
00039 *          Specifies whether the matrix A is upper or lower triangular.
00040 *          = 'U':  Upper triangular
00041 *          = 'L':  Lower triangular
00042 *
00043 *  TRANS   (input) CHARACTER*1
00044 *          Specifies the operation applied to A.
00045 *          = 'N':  Solve A * x = s*b     (No transpose)
00046 *          = 'T':  Solve A**T * x = s*b  (Transpose)
00047 *          = 'C':  Solve A**H * x = s*b  (Conjugate transpose)
00048 *
00049 *  DIAG    (input) CHARACTER*1
00050 *          Specifies whether or not the matrix A is unit triangular.
00051 *          = 'N':  Non-unit triangular
00052 *          = 'U':  Unit triangular
00053 *
00054 *  NORMIN  (input) CHARACTER*1
00055 *          Specifies whether CNORM has been set or not.
00056 *          = 'Y':  CNORM contains the column norms on entry
00057 *          = 'N':  CNORM is not set on entry.  On exit, the norms will
00058 *                  be computed and stored in CNORM.
00059 *
00060 *  N       (input) INTEGER
00061 *          The order of the matrix A.  N >= 0.
00062 *
00063 *  A       (input) COMPLEX array, dimension (LDA,N)
00064 *          The triangular matrix A.  If UPLO = 'U', the leading n by n
00065 *          upper triangular part of the array A contains the upper
00066 *          triangular matrix, and the strictly lower triangular part of
00067 *          A is not referenced.  If UPLO = 'L', the leading n by n lower
00068 *          triangular part of the array A contains the lower triangular
00069 *          matrix, and the strictly upper triangular part of A is not
00070 *          referenced.  If DIAG = 'U', the diagonal elements of A are
00071 *          also not referenced and are assumed to be 1.
00072 *
00073 *  LDA     (input) INTEGER
00074 *          The leading dimension of the array A.  LDA >= max (1,N).
00075 *
00076 *  X       (input/output) COMPLEX array, dimension (N)
00077 *          On entry, the right hand side b of the triangular system.
00078 *          On exit, X is overwritten by the solution vector x.
00079 *
00080 *  SCALE   (output) REAL
00081 *          The scaling factor s for the triangular system
00082 *             A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b.
00083 *          If SCALE = 0, the matrix A is singular or badly scaled, and
00084 *          the vector x is an exact or approximate solution to A*x = 0.
00085 *
00086 *  CNORM   (input or output) REAL array, dimension (N)
00087 *
00088 *          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
00089 *          contains the norm of the off-diagonal part of the j-th column
00090 *          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
00091 *          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
00092 *          must be greater than or equal to the 1-norm.
00093 *
00094 *          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
00095 *          returns the 1-norm of the offdiagonal part of the j-th column
00096 *          of A.
00097 *
00098 *  INFO    (output) INTEGER
00099 *          = 0:  successful exit
00100 *          < 0:  if INFO = -k, the k-th argument had an illegal value
00101 *
00102 *  Further Details
00103 *  ======= =======
00104 *
00105 *  A rough bound on x is computed; if that is less than overflow, CTRSV
00106 *  is called, otherwise, specific code is used which checks for possible
00107 *  overflow or divide-by-zero at every operation.
00108 *
00109 *  A columnwise scheme is used for solving A*x = b.  The basic algorithm
00110 *  if A is lower triangular is
00111 *
00112 *       x[1:n] := b[1:n]
00113 *       for j = 1, ..., n
00114 *            x(j) := x(j) / A(j,j)
00115 *            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
00116 *       end
00117 *
00118 *  Define bounds on the components of x after j iterations of the loop:
00119 *     M(j) = bound on x[1:j]
00120 *     G(j) = bound on x[j+1:n]
00121 *  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
00122 *
00123 *  Then for iteration j+1 we have
00124 *     M(j+1) <= G(j) / | A(j+1,j+1) |
00125 *     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
00126 *            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
00127 *
00128 *  where CNORM(j+1) is greater than or equal to the infinity-norm of
00129 *  column j+1 of A, not counting the diagonal.  Hence
00130 *
00131 *     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
00132 *                  1<=i<=j
00133 *  and
00134 *
00135 *     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
00136 *                                   1<=i< j
00137 *
00138 *  Since |x(j)| <= M(j), we use the Level 2 BLAS routine CTRSV if the
00139 *  reciprocal of the largest M(j), j=1,..,n, is larger than
00140 *  max(underflow, 1/overflow).
00141 *
00142 *  The bound on x(j) is also used to determine when a step in the
00143 *  columnwise method can be performed without fear of overflow.  If
00144 *  the computed bound is greater than a large constant, x is scaled to
00145 *  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
00146 *  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
00147 *
00148 *  Similarly, a row-wise scheme is used to solve A**T *x = b  or
00149 *  A**H *x = b.  The basic algorithm for A upper triangular is
00150 *
00151 *       for j = 1, ..., n
00152 *            x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
00153 *       end
00154 *
00155 *  We simultaneously compute two bounds
00156 *       G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
00157 *       M(j) = bound on x(i), 1<=i<=j
00158 *
00159 *  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
00160 *  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
00161 *  Then the bound on x(j) is
00162 *
00163 *       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
00164 *
00165 *            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
00166 *                      1<=i<=j
00167 *
00168 *  and we can safely call CTRSV if 1/M(n) and 1/G(n) are both greater
00169 *  than max(underflow, 1/overflow).
00170 *
00171 *  =====================================================================
00172 *
00173 *     .. Parameters ..
00174       REAL               ZERO, HALF, ONE, TWO
00175       PARAMETER          ( ZERO = 0.0E+0, HALF = 0.5E+0, ONE = 1.0E+0,
00176      $                   TWO = 2.0E+0 )
00177 *     ..
00178 *     .. Local Scalars ..
00179       LOGICAL            NOTRAN, NOUNIT, UPPER
00180       INTEGER            I, IMAX, J, JFIRST, JINC, JLAST
00181       REAL               BIGNUM, GROW, REC, SMLNUM, TJJ, TMAX, TSCAL,
00182      $                   XBND, XJ, XMAX
00183       COMPLEX            CSUMJ, TJJS, USCAL, ZDUM
00184 *     ..
00185 *     .. External Functions ..
00186       LOGICAL            LSAME
00187       INTEGER            ICAMAX, ISAMAX
00188       REAL               SCASUM, SLAMCH
00189       COMPLEX            CDOTC, CDOTU, CLADIV
00190       EXTERNAL           LSAME, ICAMAX, ISAMAX, SCASUM, SLAMCH, CDOTC,
00191      $                   CDOTU, CLADIV
00192 *     ..
00193 *     .. External Subroutines ..
00194       EXTERNAL           CAXPY, CSSCAL, CTRSV, SLABAD, SSCAL, XERBLA
00195 *     ..
00196 *     .. Intrinsic Functions ..
00197       INTRINSIC          ABS, AIMAG, CMPLX, CONJG, MAX, MIN, REAL
00198 *     ..
00199 *     .. Statement Functions ..
00200       REAL               CABS1, CABS2
00201 *     ..
00202 *     .. Statement Function definitions ..
00203       CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
00204       CABS2( ZDUM ) = ABS( REAL( ZDUM ) / 2. ) +
00205      $                ABS( AIMAG( ZDUM ) / 2. )
00206 *     ..
00207 *     .. Executable Statements ..
00208 *
00209       INFO = 0
00210       UPPER = LSAME( UPLO, 'U' )
00211       NOTRAN = LSAME( TRANS, 'N' )
00212       NOUNIT = LSAME( DIAG, 'N' )
00213 *
00214 *     Test the input parameters.
00215 *
00216       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
00217          INFO = -1
00218       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
00219      $         LSAME( TRANS, 'C' ) ) THEN
00220          INFO = -2
00221       ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
00222          INFO = -3
00223       ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
00224      $         LSAME( NORMIN, 'N' ) ) THEN
00225          INFO = -4
00226       ELSE IF( N.LT.0 ) THEN
00227          INFO = -5
00228       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
00229          INFO = -7
00230       END IF
00231       IF( INFO.NE.0 ) THEN
00232          CALL XERBLA( 'CLATRS', -INFO )
00233          RETURN
00234       END IF
00235 *
00236 *     Quick return if possible
00237 *
00238       IF( N.EQ.0 )
00239      $   RETURN
00240 *
00241 *     Determine machine dependent parameters to control overflow.
00242 *
00243       SMLNUM = SLAMCH( 'Safe minimum' )
00244       BIGNUM = ONE / SMLNUM
00245       CALL SLABAD( SMLNUM, BIGNUM )
00246       SMLNUM = SMLNUM / SLAMCH( 'Precision' )
00247       BIGNUM = ONE / SMLNUM
00248       SCALE = ONE
00249 *
00250       IF( LSAME( NORMIN, 'N' ) ) THEN
00251 *
00252 *        Compute the 1-norm of each column, not including the diagonal.
00253 *
00254          IF( UPPER ) THEN
00255 *
00256 *           A is upper triangular.
00257 *
00258             DO 10 J = 1, N
00259                CNORM( J ) = SCASUM( J-1, A( 1, J ), 1 )
00260    10       CONTINUE
00261          ELSE
00262 *
00263 *           A is lower triangular.
00264 *
00265             DO 20 J = 1, N - 1
00266                CNORM( J ) = SCASUM( N-J, A( J+1, J ), 1 )
00267    20       CONTINUE
00268             CNORM( N ) = ZERO
00269          END IF
00270       END IF
00271 *
00272 *     Scale the column norms by TSCAL if the maximum element in CNORM is
00273 *     greater than BIGNUM/2.
00274 *
00275       IMAX = ISAMAX( N, CNORM, 1 )
00276       TMAX = CNORM( IMAX )
00277       IF( TMAX.LE.BIGNUM*HALF ) THEN
00278          TSCAL = ONE
00279       ELSE
00280          TSCAL = HALF / ( SMLNUM*TMAX )
00281          CALL SSCAL( N, TSCAL, CNORM, 1 )
00282       END IF
00283 *
00284 *     Compute a bound on the computed solution vector to see if the
00285 *     Level 2 BLAS routine CTRSV can be used.
00286 *
00287       XMAX = ZERO
00288       DO 30 J = 1, N
00289          XMAX = MAX( XMAX, CABS2( X( J ) ) )
00290    30 CONTINUE
00291       XBND = XMAX
00292 *
00293       IF( NOTRAN ) THEN
00294 *
00295 *        Compute the growth in A * x = b.
00296 *
00297          IF( UPPER ) THEN
00298             JFIRST = N
00299             JLAST = 1
00300             JINC = -1
00301          ELSE
00302             JFIRST = 1
00303             JLAST = N
00304             JINC = 1
00305          END IF
00306 *
00307          IF( TSCAL.NE.ONE ) THEN
00308             GROW = ZERO
00309             GO TO 60
00310          END IF
00311 *
00312          IF( NOUNIT ) THEN
00313 *
00314 *           A is non-unit triangular.
00315 *
00316 *           Compute GROW = 1/G(j) and XBND = 1/M(j).
00317 *           Initially, G(0) = max{x(i), i=1,...,n}.
00318 *
00319             GROW = HALF / MAX( XBND, SMLNUM )
00320             XBND = GROW
00321             DO 40 J = JFIRST, JLAST, JINC
00322 *
00323 *              Exit the loop if the growth factor is too small.
00324 *
00325                IF( GROW.LE.SMLNUM )
00326      $            GO TO 60
00327 *
00328                TJJS = A( J, J )
00329                TJJ = CABS1( TJJS )
00330 *
00331                IF( TJJ.GE.SMLNUM ) THEN
00332 *
00333 *                 M(j) = G(j-1) / abs(A(j,j))
00334 *
00335                   XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
00336                ELSE
00337 *
00338 *                 M(j) could overflow, set XBND to 0.
00339 *
00340                   XBND = ZERO
00341                END IF
00342 *
00343                IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
00344 *
00345 *                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
00346 *
00347                   GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
00348                ELSE
00349 *
00350 *                 G(j) could overflow, set GROW to 0.
00351 *
00352                   GROW = ZERO
00353                END IF
00354    40       CONTINUE
00355             GROW = XBND
00356          ELSE
00357 *
00358 *           A is unit triangular.
00359 *
00360 *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
00361 *
00362             GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
00363             DO 50 J = JFIRST, JLAST, JINC
00364 *
00365 *              Exit the loop if the growth factor is too small.
00366 *
00367                IF( GROW.LE.SMLNUM )
00368      $            GO TO 60
00369 *
00370 *              G(j) = G(j-1)*( 1 + CNORM(j) )
00371 *
00372                GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
00373    50       CONTINUE
00374          END IF
00375    60    CONTINUE
00376 *
00377       ELSE
00378 *
00379 *        Compute the growth in A**T * x = b  or  A**H * x = b.
00380 *
00381          IF( UPPER ) THEN
00382             JFIRST = 1
00383             JLAST = N
00384             JINC = 1
00385          ELSE
00386             JFIRST = N
00387             JLAST = 1
00388             JINC = -1
00389          END IF
00390 *
00391          IF( TSCAL.NE.ONE ) THEN
00392             GROW = ZERO
00393             GO TO 90
00394          END IF
00395 *
00396          IF( NOUNIT ) THEN
00397 *
00398 *           A is non-unit triangular.
00399 *
00400 *           Compute GROW = 1/G(j) and XBND = 1/M(j).
00401 *           Initially, M(0) = max{x(i), i=1,...,n}.
00402 *
00403             GROW = HALF / MAX( XBND, SMLNUM )
00404             XBND = GROW
00405             DO 70 J = JFIRST, JLAST, JINC
00406 *
00407 *              Exit the loop if the growth factor is too small.
00408 *
00409                IF( GROW.LE.SMLNUM )
00410      $            GO TO 90
00411 *
00412 *              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
00413 *
00414                XJ = ONE + CNORM( J )
00415                GROW = MIN( GROW, XBND / XJ )
00416 *
00417                TJJS = A( J, J )
00418                TJJ = CABS1( TJJS )
00419 *
00420                IF( TJJ.GE.SMLNUM ) THEN
00421 *
00422 *                 M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
00423 *
00424                   IF( XJ.GT.TJJ )
00425      $               XBND = XBND*( TJJ / XJ )
00426                ELSE
00427 *
00428 *                 M(j) could overflow, set XBND to 0.
00429 *
00430                   XBND = ZERO
00431                END IF
00432    70       CONTINUE
00433             GROW = MIN( GROW, XBND )
00434          ELSE
00435 *
00436 *           A is unit triangular.
00437 *
00438 *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
00439 *
00440             GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
00441             DO 80 J = JFIRST, JLAST, JINC
00442 *
00443 *              Exit the loop if the growth factor is too small.
00444 *
00445                IF( GROW.LE.SMLNUM )
00446      $            GO TO 90
00447 *
00448 *              G(j) = ( 1 + CNORM(j) )*G(j-1)
00449 *
00450                XJ = ONE + CNORM( J )
00451                GROW = GROW / XJ
00452    80       CONTINUE
00453          END IF
00454    90    CONTINUE
00455       END IF
00456 *
00457       IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
00458 *
00459 *        Use the Level 2 BLAS solve if the reciprocal of the bound on
00460 *        elements of X is not too small.
00461 *
00462          CALL CTRSV( UPLO, TRANS, DIAG, N, A, LDA, X, 1 )
00463       ELSE
00464 *
00465 *        Use a Level 1 BLAS solve, scaling intermediate results.
00466 *
00467          IF( XMAX.GT.BIGNUM*HALF ) THEN
00468 *
00469 *           Scale X so that its components are less than or equal to
00470 *           BIGNUM in absolute value.
00471 *
00472             SCALE = ( BIGNUM*HALF ) / XMAX
00473             CALL CSSCAL( N, SCALE, X, 1 )
00474             XMAX = BIGNUM
00475          ELSE
00476             XMAX = XMAX*TWO
00477          END IF
00478 *
00479          IF( NOTRAN ) THEN
00480 *
00481 *           Solve A * x = b
00482 *
00483             DO 110 J = JFIRST, JLAST, JINC
00484 *
00485 *              Compute x(j) = b(j) / A(j,j), scaling x if necessary.
00486 *
00487                XJ = CABS1( X( J ) )
00488                IF( NOUNIT ) THEN
00489                   TJJS = A( J, J )*TSCAL
00490                ELSE
00491                   TJJS = TSCAL
00492                   IF( TSCAL.EQ.ONE )
00493      $               GO TO 105
00494                END IF
00495                   TJJ = CABS1( TJJS )
00496                   IF( TJJ.GT.SMLNUM ) THEN
00497 *
00498 *                    abs(A(j,j)) > SMLNUM:
00499 *
00500                      IF( TJJ.LT.ONE ) THEN
00501                         IF( XJ.GT.TJJ*BIGNUM ) THEN
00502 *
00503 *                          Scale x by 1/b(j).
00504 *
00505                            REC = ONE / XJ
00506                            CALL CSSCAL( N, REC, X, 1 )
00507                            SCALE = SCALE*REC
00508                            XMAX = XMAX*REC
00509                         END IF
00510                      END IF
00511                      X( J ) = CLADIV( X( J ), TJJS )
00512                      XJ = CABS1( X( J ) )
00513                   ELSE IF( TJJ.GT.ZERO ) THEN
00514 *
00515 *                    0 < abs(A(j,j)) <= SMLNUM:
00516 *
00517                      IF( XJ.GT.TJJ*BIGNUM ) THEN
00518 *
00519 *                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
00520 *                       to avoid overflow when dividing by A(j,j).
00521 *
00522                         REC = ( TJJ*BIGNUM ) / XJ
00523                         IF( CNORM( J ).GT.ONE ) THEN
00524 *
00525 *                          Scale by 1/CNORM(j) to avoid overflow when
00526 *                          multiplying x(j) times column j.
00527 *
00528                            REC = REC / CNORM( J )
00529                         END IF
00530                         CALL CSSCAL( N, REC, X, 1 )
00531                         SCALE = SCALE*REC
00532                         XMAX = XMAX*REC
00533                      END IF
00534                      X( J ) = CLADIV( X( J ), TJJS )
00535                      XJ = CABS1( X( J ) )
00536                   ELSE
00537 *
00538 *                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
00539 *                    scale = 0, and compute a solution to A*x = 0.
00540 *
00541                      DO 100 I = 1, N
00542                         X( I ) = ZERO
00543   100                CONTINUE
00544                      X( J ) = ONE
00545                      XJ = ONE
00546                      SCALE = ZERO
00547                      XMAX = ZERO
00548                   END IF
00549   105          CONTINUE
00550 *
00551 *              Scale x if necessary to avoid overflow when adding a
00552 *              multiple of column j of A.
00553 *
00554                IF( XJ.GT.ONE ) THEN
00555                   REC = ONE / XJ
00556                   IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
00557 *
00558 *                    Scale x by 1/(2*abs(x(j))).
00559 *
00560                      REC = REC*HALF
00561                      CALL CSSCAL( N, REC, X, 1 )
00562                      SCALE = SCALE*REC
00563                   END IF
00564                ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
00565 *
00566 *                 Scale x by 1/2.
00567 *
00568                   CALL CSSCAL( N, HALF, X, 1 )
00569                   SCALE = SCALE*HALF
00570                END IF
00571 *
00572                IF( UPPER ) THEN
00573                   IF( J.GT.1 ) THEN
00574 *
00575 *                    Compute the update
00576 *                       x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
00577 *
00578                      CALL CAXPY( J-1, -X( J )*TSCAL, A( 1, J ), 1, X,
00579      $                           1 )
00580                      I = ICAMAX( J-1, X, 1 )
00581                      XMAX = CABS1( X( I ) )
00582                   END IF
00583                ELSE
00584                   IF( J.LT.N ) THEN
00585 *
00586 *                    Compute the update
00587 *                       x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
00588 *
00589                      CALL CAXPY( N-J, -X( J )*TSCAL, A( J+1, J ), 1,
00590      $                           X( J+1 ), 1 )
00591                      I = J + ICAMAX( N-J, X( J+1 ), 1 )
00592                      XMAX = CABS1( X( I ) )
00593                   END IF
00594                END IF
00595   110       CONTINUE
00596 *
00597          ELSE IF( LSAME( TRANS, 'T' ) ) THEN
00598 *
00599 *           Solve A**T * x = b
00600 *
00601             DO 150 J = JFIRST, JLAST, JINC
00602 *
00603 *              Compute x(j) = b(j) - sum A(k,j)*x(k).
00604 *                                    k<>j
00605 *
00606                XJ = CABS1( X( J ) )
00607                USCAL = TSCAL
00608                REC = ONE / MAX( XMAX, ONE )
00609                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
00610 *
00611 *                 If x(j) could overflow, scale x by 1/(2*XMAX).
00612 *
00613                   REC = REC*HALF
00614                   IF( NOUNIT ) THEN
00615                      TJJS = A( J, J )*TSCAL
00616                   ELSE
00617                      TJJS = TSCAL
00618                   END IF
00619                      TJJ = CABS1( TJJS )
00620                      IF( TJJ.GT.ONE ) THEN
00621 *
00622 *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
00623 *
00624                         REC = MIN( ONE, REC*TJJ )
00625                         USCAL = CLADIV( USCAL, TJJS )
00626                      END IF
00627                   IF( REC.LT.ONE ) THEN
00628                      CALL CSSCAL( N, REC, X, 1 )
00629                      SCALE = SCALE*REC
00630                      XMAX = XMAX*REC
00631                   END IF
00632                END IF
00633 *
00634                CSUMJ = ZERO
00635                IF( USCAL.EQ.CMPLX( ONE ) ) THEN
00636 *
00637 *                 If the scaling needed for A in the dot product is 1,
00638 *                 call CDOTU to perform the dot product.
00639 *
00640                   IF( UPPER ) THEN
00641                      CSUMJ = CDOTU( J-1, A( 1, J ), 1, X, 1 )
00642                   ELSE IF( J.LT.N ) THEN
00643                      CSUMJ = CDOTU( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
00644                   END IF
00645                ELSE
00646 *
00647 *                 Otherwise, use in-line code for the dot product.
00648 *
00649                   IF( UPPER ) THEN
00650                      DO 120 I = 1, J - 1
00651                         CSUMJ = CSUMJ + ( A( I, J )*USCAL )*X( I )
00652   120                CONTINUE
00653                   ELSE IF( J.LT.N ) THEN
00654                      DO 130 I = J + 1, N
00655                         CSUMJ = CSUMJ + ( A( I, J )*USCAL )*X( I )
00656   130                CONTINUE
00657                   END IF
00658                END IF
00659 *
00660                IF( USCAL.EQ.CMPLX( TSCAL ) ) THEN
00661 *
00662 *                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
00663 *                 was not used to scale the dotproduct.
00664 *
00665                   X( J ) = X( J ) - CSUMJ
00666                   XJ = CABS1( X( J ) )
00667                   IF( NOUNIT ) THEN
00668                      TJJS = A( J, J )*TSCAL
00669                   ELSE
00670                      TJJS = TSCAL
00671                      IF( TSCAL.EQ.ONE )
00672      $                  GO TO 145
00673                   END IF
00674 *
00675 *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
00676 *
00677                      TJJ = CABS1( TJJS )
00678                      IF( TJJ.GT.SMLNUM ) THEN
00679 *
00680 *                       abs(A(j,j)) > SMLNUM:
00681 *
00682                         IF( TJJ.LT.ONE ) THEN
00683                            IF( XJ.GT.TJJ*BIGNUM ) THEN
00684 *
00685 *                             Scale X by 1/abs(x(j)).
00686 *
00687                               REC = ONE / XJ
00688                               CALL CSSCAL( N, REC, X, 1 )
00689                               SCALE = SCALE*REC
00690                               XMAX = XMAX*REC
00691                            END IF
00692                         END IF
00693                         X( J ) = CLADIV( X( J ), TJJS )
00694                      ELSE IF( TJJ.GT.ZERO ) THEN
00695 *
00696 *                       0 < abs(A(j,j)) <= SMLNUM:
00697 *
00698                         IF( XJ.GT.TJJ*BIGNUM ) THEN
00699 *
00700 *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
00701 *
00702                            REC = ( TJJ*BIGNUM ) / XJ
00703                            CALL CSSCAL( N, REC, X, 1 )
00704                            SCALE = SCALE*REC
00705                            XMAX = XMAX*REC
00706                         END IF
00707                         X( J ) = CLADIV( X( J ), TJJS )
00708                      ELSE
00709 *
00710 *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
00711 *                       scale = 0 and compute a solution to A**T *x = 0.
00712 *
00713                         DO 140 I = 1, N
00714                            X( I ) = ZERO
00715   140                   CONTINUE
00716                         X( J ) = ONE
00717                         SCALE = ZERO
00718                         XMAX = ZERO
00719                      END IF
00720   145             CONTINUE
00721                ELSE
00722 *
00723 *                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
00724 *                 product has already been divided by 1/A(j,j).
00725 *
00726                   X( J ) = CLADIV( X( J ), TJJS ) - CSUMJ
00727                END IF
00728                XMAX = MAX( XMAX, CABS1( X( J ) ) )
00729   150       CONTINUE
00730 *
00731          ELSE
00732 *
00733 *           Solve A**H * x = b
00734 *
00735             DO 190 J = JFIRST, JLAST, JINC
00736 *
00737 *              Compute x(j) = b(j) - sum A(k,j)*x(k).
00738 *                                    k<>j
00739 *
00740                XJ = CABS1( X( J ) )
00741                USCAL = TSCAL
00742                REC = ONE / MAX( XMAX, ONE )
00743                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
00744 *
00745 *                 If x(j) could overflow, scale x by 1/(2*XMAX).
00746 *
00747                   REC = REC*HALF
00748                   IF( NOUNIT ) THEN
00749                      TJJS = CONJG( A( J, J ) )*TSCAL
00750                   ELSE
00751                      TJJS = TSCAL
00752                   END IF
00753                      TJJ = CABS1( TJJS )
00754                      IF( TJJ.GT.ONE ) THEN
00755 *
00756 *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
00757 *
00758                         REC = MIN( ONE, REC*TJJ )
00759                         USCAL = CLADIV( USCAL, TJJS )
00760                      END IF
00761                   IF( REC.LT.ONE ) THEN
00762                      CALL CSSCAL( N, REC, X, 1 )
00763                      SCALE = SCALE*REC
00764                      XMAX = XMAX*REC
00765                   END IF
00766                END IF
00767 *
00768                CSUMJ = ZERO
00769                IF( USCAL.EQ.CMPLX( ONE ) ) THEN
00770 *
00771 *                 If the scaling needed for A in the dot product is 1,
00772 *                 call CDOTC to perform the dot product.
00773 *
00774                   IF( UPPER ) THEN
00775                      CSUMJ = CDOTC( J-1, A( 1, J ), 1, X, 1 )
00776                   ELSE IF( J.LT.N ) THEN
00777                      CSUMJ = CDOTC( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
00778                   END IF
00779                ELSE
00780 *
00781 *                 Otherwise, use in-line code for the dot product.
00782 *
00783                   IF( UPPER ) THEN
00784                      DO 160 I = 1, J - 1
00785                         CSUMJ = CSUMJ + ( CONJG( A( I, J ) )*USCAL )*
00786      $                          X( I )
00787   160                CONTINUE
00788                   ELSE IF( J.LT.N ) THEN
00789                      DO 170 I = J + 1, N
00790                         CSUMJ = CSUMJ + ( CONJG( A( I, J ) )*USCAL )*
00791      $                          X( I )
00792   170                CONTINUE
00793                   END IF
00794                END IF
00795 *
00796                IF( USCAL.EQ.CMPLX( TSCAL ) ) THEN
00797 *
00798 *                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
00799 *                 was not used to scale the dotproduct.
00800 *
00801                   X( J ) = X( J ) - CSUMJ
00802                   XJ = CABS1( X( J ) )
00803                   IF( NOUNIT ) THEN
00804                      TJJS = CONJG( A( J, J ) )*TSCAL
00805                   ELSE
00806                      TJJS = TSCAL
00807                      IF( TSCAL.EQ.ONE )
00808      $                  GO TO 185
00809                   END IF
00810 *
00811 *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
00812 *
00813                      TJJ = CABS1( TJJS )
00814                      IF( TJJ.GT.SMLNUM ) THEN
00815 *
00816 *                       abs(A(j,j)) > SMLNUM:
00817 *
00818                         IF( TJJ.LT.ONE ) THEN
00819                            IF( XJ.GT.TJJ*BIGNUM ) THEN
00820 *
00821 *                             Scale X by 1/abs(x(j)).
00822 *
00823                               REC = ONE / XJ
00824                               CALL CSSCAL( N, REC, X, 1 )
00825                               SCALE = SCALE*REC
00826                               XMAX = XMAX*REC
00827                            END IF
00828                         END IF
00829                         X( J ) = CLADIV( X( J ), TJJS )
00830                      ELSE IF( TJJ.GT.ZERO ) THEN
00831 *
00832 *                       0 < abs(A(j,j)) <= SMLNUM:
00833 *
00834                         IF( XJ.GT.TJJ*BIGNUM ) THEN
00835 *
00836 *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
00837 *
00838                            REC = ( TJJ*BIGNUM ) / XJ
00839                            CALL CSSCAL( N, REC, X, 1 )
00840                            SCALE = SCALE*REC
00841                            XMAX = XMAX*REC
00842                         END IF
00843                         X( J ) = CLADIV( X( J ), TJJS )
00844                      ELSE
00845 *
00846 *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
00847 *                       scale = 0 and compute a solution to A**H *x = 0.
00848 *
00849                         DO 180 I = 1, N
00850                            X( I ) = ZERO
00851   180                   CONTINUE
00852                         X( J ) = ONE
00853                         SCALE = ZERO
00854                         XMAX = ZERO
00855                      END IF
00856   185             CONTINUE
00857                ELSE
00858 *
00859 *                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
00860 *                 product has already been divided by 1/A(j,j).
00861 *
00862                   X( J ) = CLADIV( X( J ), TJJS ) - CSUMJ
00863                END IF
00864                XMAX = MAX( XMAX, CABS1( X( J ) ) )
00865   190       CONTINUE
00866          END IF
00867          SCALE = SCALE / TSCAL
00868       END IF
00869 *
00870 *     Scale the column norms by 1/TSCAL for return.
00871 *
00872       IF( TSCAL.NE.ONE ) THEN
00873          CALL SSCAL( N, ONE / TSCAL, CNORM, 1 )
00874       END IF
00875 *
00876       RETURN
00877 *
00878 *     End of CLATRS
00879 *
00880       END
 All Files Functions