LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE DLARFG( N, ALPHA, X, INCX, TAU ) 00002 * 00003 * -- LAPACK auxiliary routine (version 3.3.1) -- 00004 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00005 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00006 * -- April 2011 -- 00007 * 00008 * .. Scalar Arguments .. 00009 INTEGER INCX, N 00010 DOUBLE PRECISION ALPHA, TAU 00011 * .. 00012 * .. Array Arguments .. 00013 DOUBLE PRECISION X( * ) 00014 * .. 00015 * 00016 * Purpose 00017 * ======= 00018 * 00019 * DLARFG generates a real elementary reflector H of order n, such 00020 * that 00021 * 00022 * H * ( alpha ) = ( beta ), H**T * H = I. 00023 * ( x ) ( 0 ) 00024 * 00025 * where alpha and beta are scalars, and x is an (n-1)-element real 00026 * vector. H is represented in the form 00027 * 00028 * H = I - tau * ( 1 ) * ( 1 v**T ) , 00029 * ( v ) 00030 * 00031 * where tau is a real scalar and v is a real (n-1)-element 00032 * vector. 00033 * 00034 * If the elements of x are all zero, then tau = 0 and H is taken to be 00035 * the unit matrix. 00036 * 00037 * Otherwise 1 <= tau <= 2. 00038 * 00039 * Arguments 00040 * ========= 00041 * 00042 * N (input) INTEGER 00043 * The order of the elementary reflector. 00044 * 00045 * ALPHA (input/output) DOUBLE PRECISION 00046 * On entry, the value alpha. 00047 * On exit, it is overwritten with the value beta. 00048 * 00049 * X (input/output) DOUBLE PRECISION array, dimension 00050 * (1+(N-2)*abs(INCX)) 00051 * On entry, the vector x. 00052 * On exit, it is overwritten with the vector v. 00053 * 00054 * INCX (input) INTEGER 00055 * The increment between elements of X. INCX > 0. 00056 * 00057 * TAU (output) DOUBLE PRECISION 00058 * The value tau. 00059 * 00060 * ===================================================================== 00061 * 00062 * .. Parameters .. 00063 DOUBLE PRECISION ONE, ZERO 00064 PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) 00065 * .. 00066 * .. Local Scalars .. 00067 INTEGER J, KNT 00068 DOUBLE PRECISION BETA, RSAFMN, SAFMIN, XNORM 00069 * .. 00070 * .. External Functions .. 00071 DOUBLE PRECISION DLAMCH, DLAPY2, DNRM2 00072 EXTERNAL DLAMCH, DLAPY2, DNRM2 00073 * .. 00074 * .. Intrinsic Functions .. 00075 INTRINSIC ABS, SIGN 00076 * .. 00077 * .. External Subroutines .. 00078 EXTERNAL DSCAL 00079 * .. 00080 * .. Executable Statements .. 00081 * 00082 IF( N.LE.1 ) THEN 00083 TAU = ZERO 00084 RETURN 00085 END IF 00086 * 00087 XNORM = DNRM2( N-1, X, INCX ) 00088 * 00089 IF( XNORM.EQ.ZERO ) THEN 00090 * 00091 * H = I 00092 * 00093 TAU = ZERO 00094 ELSE 00095 * 00096 * general case 00097 * 00098 BETA = -SIGN( DLAPY2( ALPHA, XNORM ), ALPHA ) 00099 SAFMIN = DLAMCH( 'S' ) / DLAMCH( 'E' ) 00100 KNT = 0 00101 IF( ABS( BETA ).LT.SAFMIN ) THEN 00102 * 00103 * XNORM, BETA may be inaccurate; scale X and recompute them 00104 * 00105 RSAFMN = ONE / SAFMIN 00106 10 CONTINUE 00107 KNT = KNT + 1 00108 CALL DSCAL( N-1, RSAFMN, X, INCX ) 00109 BETA = BETA*RSAFMN 00110 ALPHA = ALPHA*RSAFMN 00111 IF( ABS( BETA ).LT.SAFMIN ) 00112 $ GO TO 10 00113 * 00114 * New BETA is at most 1, at least SAFMIN 00115 * 00116 XNORM = DNRM2( N-1, X, INCX ) 00117 BETA = -SIGN( DLAPY2( ALPHA, XNORM ), ALPHA ) 00118 END IF 00119 TAU = ( BETA-ALPHA ) / BETA 00120 CALL DSCAL( N-1, ONE / ( ALPHA-BETA ), X, INCX ) 00121 * 00122 * If ALPHA is subnormal, it may lose relative accuracy 00123 * 00124 DO 20 J = 1, KNT 00125 BETA = BETA*SAFMIN 00126 20 CONTINUE 00127 ALPHA = BETA 00128 END IF 00129 * 00130 RETURN 00131 * 00132 * End of DLARFG 00133 * 00134 END