LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE SSVDCT( N, S, E, SHIFT, NUM ) 00002 * 00003 * -- LAPACK test routine (version 3.1) -- 00004 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 00005 * November 2006 00006 * 00007 * .. Scalar Arguments .. 00008 INTEGER N, NUM 00009 REAL SHIFT 00010 * .. 00011 * .. Array Arguments .. 00012 REAL E( * ), S( * ) 00013 * .. 00014 * 00015 * Purpose 00016 * ======= 00017 * 00018 * SSVDCT counts the number NUM of eigenvalues of a 2*N by 2*N 00019 * tridiagonal matrix T which are less than or equal to SHIFT. T is 00020 * formed by putting zeros on the diagonal and making the off-diagonals 00021 * equal to S(1), E(1), S(2), E(2), ... , E(N-1), S(N). If SHIFT is 00022 * positive, NUM is equal to N plus the number of singular values of a 00023 * bidiagonal matrix B less than or equal to SHIFT. Here B has diagonal 00024 * entries S(1), ..., S(N) and superdiagonal entries E(1), ... E(N-1). 00025 * If SHIFT is negative, NUM is equal to the number of singular values 00026 * of B greater than or equal to -SHIFT. 00027 * 00028 * See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal 00029 * Matrix", Report CS41, Computer Science Dept., Stanford University, 00030 * July 21, 1966 00031 * 00032 * Arguments 00033 * ========= 00034 * 00035 * N (input) INTEGER 00036 * The dimension of the bidiagonal matrix B. 00037 * 00038 * S (input) REAL array, dimension (N) 00039 * The diagonal entries of the bidiagonal matrix B. 00040 * 00041 * E (input) REAL array of dimension (N-1) 00042 * The superdiagonal entries of the bidiagonal matrix B. 00043 * 00044 * SHIFT (input) REAL 00045 * The shift, used as described under Purpose. 00046 * 00047 * NUM (output) INTEGER 00048 * The number of eigenvalues of T less than or equal to SHIFT. 00049 * 00050 * ===================================================================== 00051 * 00052 * .. Parameters .. 00053 REAL ONE 00054 PARAMETER ( ONE = 1.0E0 ) 00055 REAL ZERO 00056 PARAMETER ( ZERO = 0.0E0 ) 00057 * .. 00058 * .. Local Scalars .. 00059 INTEGER I 00060 REAL M1, M2, MX, OVFL, SOV, SSHIFT, SSUN, SUN, TMP, 00061 $ TOM, U, UNFL 00062 * .. 00063 * .. External Functions .. 00064 REAL SLAMCH 00065 EXTERNAL SLAMCH 00066 * .. 00067 * .. Intrinsic Functions .. 00068 INTRINSIC ABS, MAX, SQRT 00069 * .. 00070 * .. Executable Statements .. 00071 * 00072 * Get machine constants 00073 * 00074 UNFL = 2*SLAMCH( 'Safe minimum' ) 00075 OVFL = ONE / UNFL 00076 * 00077 * Find largest entry 00078 * 00079 MX = ABS( S( 1 ) ) 00080 DO 10 I = 1, N - 1 00081 MX = MAX( MX, ABS( S( I+1 ) ), ABS( E( I ) ) ) 00082 10 CONTINUE 00083 * 00084 IF( MX.EQ.ZERO ) THEN 00085 IF( SHIFT.LT.ZERO ) THEN 00086 NUM = 0 00087 ELSE 00088 NUM = 2*N 00089 END IF 00090 RETURN 00091 END IF 00092 * 00093 * Compute scale factors as in Kahan's report 00094 * 00095 SUN = SQRT( UNFL ) 00096 SSUN = SQRT( SUN ) 00097 SOV = SQRT( OVFL ) 00098 TOM = SSUN*SOV 00099 IF( MX.LE.ONE ) THEN 00100 M1 = ONE / MX 00101 M2 = TOM 00102 ELSE 00103 M1 = ONE 00104 M2 = TOM / MX 00105 END IF 00106 * 00107 * Begin counting 00108 * 00109 U = ONE 00110 NUM = 0 00111 SSHIFT = ( SHIFT*M1 )*M2 00112 U = -SSHIFT 00113 IF( U.LE.SUN ) THEN 00114 IF( U.LE.ZERO ) THEN 00115 NUM = NUM + 1 00116 IF( U.GT.-SUN ) 00117 $ U = -SUN 00118 ELSE 00119 U = SUN 00120 END IF 00121 END IF 00122 TMP = ( S( 1 )*M1 )*M2 00123 U = -TMP*( TMP / U ) - SSHIFT 00124 IF( U.LE.SUN ) THEN 00125 IF( U.LE.ZERO ) THEN 00126 NUM = NUM + 1 00127 IF( U.GT.-SUN ) 00128 $ U = -SUN 00129 ELSE 00130 U = SUN 00131 END IF 00132 END IF 00133 DO 20 I = 1, N - 1 00134 TMP = ( E( I )*M1 )*M2 00135 U = -TMP*( TMP / U ) - SSHIFT 00136 IF( U.LE.SUN ) THEN 00137 IF( U.LE.ZERO ) THEN 00138 NUM = NUM + 1 00139 IF( U.GT.-SUN ) 00140 $ U = -SUN 00141 ELSE 00142 U = SUN 00143 END IF 00144 END IF 00145 TMP = ( S( I+1 )*M1 )*M2 00146 U = -TMP*( TMP / U ) - SSHIFT 00147 IF( U.LE.SUN ) THEN 00148 IF( U.LE.ZERO ) THEN 00149 NUM = NUM + 1 00150 IF( U.GT.-SUN ) 00151 $ U = -SUN 00152 ELSE 00153 U = SUN 00154 END IF 00155 END IF 00156 20 CONTINUE 00157 RETURN 00158 * 00159 * End of SSVDCT 00160 * 00161 END