LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE SDRVSY( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, 00002 $ A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, 00003 $ NOUT ) 00004 * 00005 * -- LAPACK test routine (version 3.2) -- 00006 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 00007 * November 2006 00008 * 00009 * .. Scalar Arguments .. 00010 LOGICAL TSTERR 00011 INTEGER NMAX, NN, NOUT, NRHS 00012 REAL THRESH 00013 * .. 00014 * .. Array Arguments .. 00015 LOGICAL DOTYPE( * ) 00016 INTEGER IWORK( * ), NVAL( * ) 00017 REAL A( * ), AFAC( * ), AINV( * ), B( * ), 00018 $ RWORK( * ), WORK( * ), X( * ), XACT( * ) 00019 * .. 00020 * 00021 * Purpose 00022 * ======= 00023 * 00024 * SDRVSY tests the driver routines SSYSV, -SVX, and -SVXX 00025 * 00026 * Note that this file is used only when the XBLAS are available, 00027 * otherwise sdrvsy.f defines this subroutine. 00028 * 00029 * Arguments 00030 * ========= 00031 * 00032 * DOTYPE (input) LOGICAL array, dimension (NTYPES) 00033 * The matrix types to be used for testing. Matrices of type j 00034 * (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = 00035 * .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. 00036 * 00037 * NN (input) INTEGER 00038 * The number of values of N contained in the vector NVAL. 00039 * 00040 * NVAL (input) INTEGER array, dimension (NN) 00041 * The values of the matrix dimension N. 00042 * 00043 * NRHS (input) INTEGER 00044 * The number of right hand side vectors to be generated for 00045 * each linear system. 00046 * 00047 * THRESH (input) REAL 00048 * The threshold value for the test ratios. A result is 00049 * included in the output file if RESULT >= THRESH. To have 00050 * every test ratio printed, use THRESH = 0. 00051 * 00052 * TSTERR (input) LOGICAL 00053 * Flag that indicates whether error exits are to be tested. 00054 * 00055 * NMAX (input) INTEGER 00056 * The maximum value permitted for N, used in dimensioning the 00057 * work arrays. 00058 * 00059 * A (workspace) REAL array, dimension (NMAX*NMAX) 00060 * 00061 * AFAC (workspace) REAL array, dimension (NMAX*NMAX) 00062 * 00063 * AINV (workspace) REAL array, dimension (NMAX*NMAX) 00064 * 00065 * B (workspace) REAL array, dimension (NMAX*NRHS) 00066 * 00067 * X (workspace) REAL array, dimension (NMAX*NRHS) 00068 * 00069 * XACT (workspace) REAL array, dimension (NMAX*NRHS) 00070 * 00071 * WORK (workspace) REAL array, dimension 00072 * (NMAX*max(2,NRHS)) 00073 * 00074 * RWORK (workspace) REAL array, dimension (NMAX+2*NRHS) 00075 * 00076 * IWORK (workspace) INTEGER array, dimension (2*NMAX) 00077 * 00078 * NOUT (input) INTEGER 00079 * The unit number for output. 00080 * 00081 * ===================================================================== 00082 * 00083 * .. Parameters .. 00084 REAL ONE, ZERO 00085 PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) 00086 INTEGER NTYPES, NTESTS 00087 PARAMETER ( NTYPES = 10, NTESTS = 6 ) 00088 INTEGER NFACT 00089 PARAMETER ( NFACT = 2 ) 00090 * .. 00091 * .. Local Scalars .. 00092 LOGICAL ZEROT 00093 CHARACTER DIST, EQUED, FACT, TYPE, UPLO, XTYPE 00094 CHARACTER*3 PATH 00095 INTEGER I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO, 00096 $ IZERO, J, K, K1, KL, KU, LDA, LWORK, MODE, N, 00097 $ NB, NBMIN, NERRS, NFAIL, NIMAT, NRUN, NT, 00098 $ N_ERR_BNDS 00099 REAL AINVNM, ANORM, CNDNUM, RCOND, RCONDC, 00100 $ RPVGRW_SVXX 00101 * .. 00102 * .. Local Arrays .. 00103 CHARACTER FACTS( NFACT ), UPLOS( 2 ) 00104 INTEGER ISEED( 4 ), ISEEDY( 4 ) 00105 REAL RESULT( NTESTS ), BERR( NRHS ), 00106 $ ERRBNDS_N( NRHS, 3 ), ERRBNDS_C( NRHS, 3 ) 00107 * .. 00108 * .. External Functions .. 00109 REAL SGET06, SLANSY 00110 EXTERNAL SGET06, SLANSY 00111 * .. 00112 * .. External Subroutines .. 00113 EXTERNAL ALADHD, ALAERH, ALASVM, SERRVX, SGET04, SLACPY, 00114 $ SLARHS, SLASET, SLATB4, SLATMS, SPOT02, SPOT05, 00115 $ SSYSV, SSYSVX, SSYT01, SSYTRF, SSYTRI2, XLAENV, 00116 $ SSYSVXX 00117 * .. 00118 * .. Scalars in Common .. 00119 LOGICAL LERR, OK 00120 CHARACTER*32 SRNAMT 00121 INTEGER INFOT, NUNIT 00122 * .. 00123 * .. Common blocks .. 00124 COMMON / INFOC / INFOT, NUNIT, OK, LERR 00125 COMMON / SRNAMC / SRNAMT 00126 * .. 00127 * .. Intrinsic Functions .. 00128 INTRINSIC MAX, MIN 00129 * .. 00130 * .. Data statements .. 00131 DATA ISEEDY / 1988, 1989, 1990, 1991 / 00132 DATA UPLOS / 'U', 'L' / , FACTS / 'F', 'N' / 00133 * .. 00134 * .. Executable Statements .. 00135 * 00136 * Initialize constants and the random number seed. 00137 * 00138 PATH( 1: 1 ) = 'Single precision' 00139 PATH( 2: 3 ) = 'SY' 00140 NRUN = 0 00141 NFAIL = 0 00142 NERRS = 0 00143 DO 10 I = 1, 4 00144 ISEED( I ) = ISEEDY( I ) 00145 10 CONTINUE 00146 LWORK = MAX( 2*NMAX, NMAX*NRHS ) 00147 * 00148 * Test the error exits 00149 * 00150 IF( TSTERR ) 00151 $ CALL SERRVX( PATH, NOUT ) 00152 INFOT = 0 00153 * 00154 * Set the block size and minimum block size for testing. 00155 * 00156 NB = 1 00157 NBMIN = 2 00158 CALL XLAENV( 1, NB ) 00159 CALL XLAENV( 2, NBMIN ) 00160 * 00161 * Do for each value of N in NVAL 00162 * 00163 DO 180 IN = 1, NN 00164 N = NVAL( IN ) 00165 LDA = MAX( N, 1 ) 00166 XTYPE = 'N' 00167 NIMAT = NTYPES 00168 IF( N.LE.0 ) 00169 $ NIMAT = 1 00170 * 00171 DO 170 IMAT = 1, NIMAT 00172 * 00173 * Do the tests only if DOTYPE( IMAT ) is true. 00174 * 00175 IF( .NOT.DOTYPE( IMAT ) ) 00176 $ GO TO 170 00177 * 00178 * Skip types 3, 4, 5, or 6 if the matrix size is too small. 00179 * 00180 ZEROT = IMAT.GE.3 .AND. IMAT.LE.6 00181 IF( ZEROT .AND. N.LT.IMAT-2 ) 00182 $ GO TO 170 00183 * 00184 * Do first for UPLO = 'U', then for UPLO = 'L' 00185 * 00186 DO 160 IUPLO = 1, 2 00187 UPLO = UPLOS( IUPLO ) 00188 * 00189 * Set up parameters with SLATB4 and generate a test matrix 00190 * with SLATMS. 00191 * 00192 CALL SLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE, 00193 $ CNDNUM, DIST ) 00194 * 00195 SRNAMT = 'SLATMS' 00196 CALL SLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, 00197 $ CNDNUM, ANORM, KL, KU, UPLO, A, LDA, WORK, 00198 $ INFO ) 00199 * 00200 * Check error code from SLATMS. 00201 * 00202 IF( INFO.NE.0 ) THEN 00203 CALL ALAERH( PATH, 'SLATMS', INFO, 0, UPLO, N, N, -1, 00204 $ -1, -1, IMAT, NFAIL, NERRS, NOUT ) 00205 GO TO 160 00206 END IF 00207 * 00208 * For types 3-6, zero one or more rows and columns of the 00209 * matrix to test that INFO is returned correctly. 00210 * 00211 IF( ZEROT ) THEN 00212 IF( IMAT.EQ.3 ) THEN 00213 IZERO = 1 00214 ELSE IF( IMAT.EQ.4 ) THEN 00215 IZERO = N 00216 ELSE 00217 IZERO = N / 2 + 1 00218 END IF 00219 * 00220 IF( IMAT.LT.6 ) THEN 00221 * 00222 * Set row and column IZERO to zero. 00223 * 00224 IF( IUPLO.EQ.1 ) THEN 00225 IOFF = ( IZERO-1 )*LDA 00226 DO 20 I = 1, IZERO - 1 00227 A( IOFF+I ) = ZERO 00228 20 CONTINUE 00229 IOFF = IOFF + IZERO 00230 DO 30 I = IZERO, N 00231 A( IOFF ) = ZERO 00232 IOFF = IOFF + LDA 00233 30 CONTINUE 00234 ELSE 00235 IOFF = IZERO 00236 DO 40 I = 1, IZERO - 1 00237 A( IOFF ) = ZERO 00238 IOFF = IOFF + LDA 00239 40 CONTINUE 00240 IOFF = IOFF - IZERO 00241 DO 50 I = IZERO, N 00242 A( IOFF+I ) = ZERO 00243 50 CONTINUE 00244 END IF 00245 ELSE 00246 IOFF = 0 00247 IF( IUPLO.EQ.1 ) THEN 00248 * 00249 * Set the first IZERO rows and columns to zero. 00250 * 00251 DO 70 J = 1, N 00252 I2 = MIN( J, IZERO ) 00253 DO 60 I = 1, I2 00254 A( IOFF+I ) = ZERO 00255 60 CONTINUE 00256 IOFF = IOFF + LDA 00257 70 CONTINUE 00258 ELSE 00259 * 00260 * Set the last IZERO rows and columns to zero. 00261 * 00262 DO 90 J = 1, N 00263 I1 = MAX( J, IZERO ) 00264 DO 80 I = I1, N 00265 A( IOFF+I ) = ZERO 00266 80 CONTINUE 00267 IOFF = IOFF + LDA 00268 90 CONTINUE 00269 END IF 00270 END IF 00271 ELSE 00272 IZERO = 0 00273 END IF 00274 * 00275 DO 150 IFACT = 1, NFACT 00276 * 00277 * Do first for FACT = 'F', then for other values. 00278 * 00279 FACT = FACTS( IFACT ) 00280 * 00281 * Compute the condition number for comparison with 00282 * the value returned by SSYSVX. 00283 * 00284 IF( ZEROT ) THEN 00285 IF( IFACT.EQ.1 ) 00286 $ GO TO 150 00287 RCONDC = ZERO 00288 * 00289 ELSE IF( IFACT.EQ.1 ) THEN 00290 * 00291 * Compute the 1-norm of A. 00292 * 00293 ANORM = SLANSY( '1', UPLO, N, A, LDA, RWORK ) 00294 * 00295 * Factor the matrix A. 00296 * 00297 CALL SLACPY( UPLO, N, N, A, LDA, AFAC, LDA ) 00298 CALL SSYTRF( UPLO, N, AFAC, LDA, IWORK, WORK, 00299 $ LWORK, INFO ) 00300 * 00301 * Compute inv(A) and take its norm. 00302 * 00303 CALL SLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA ) 00304 LWORK = (N+NB+1)*(NB+3) 00305 CALL SSYTRI2( UPLO, N, AINV, LDA, IWORK, WORK, 00306 $ LWORK, INFO ) 00307 AINVNM = SLANSY( '1', UPLO, N, AINV, LDA, RWORK ) 00308 * 00309 * Compute the 1-norm condition number of A. 00310 * 00311 IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN 00312 RCONDC = ONE 00313 ELSE 00314 RCONDC = ( ONE / ANORM ) / AINVNM 00315 END IF 00316 END IF 00317 * 00318 * Form an exact solution and set the right hand side. 00319 * 00320 SRNAMT = 'SLARHS' 00321 CALL SLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU, 00322 $ NRHS, A, LDA, XACT, LDA, B, LDA, ISEED, 00323 $ INFO ) 00324 XTYPE = 'C' 00325 * 00326 * --- Test SSYSV --- 00327 * 00328 IF( IFACT.EQ.2 ) THEN 00329 CALL SLACPY( UPLO, N, N, A, LDA, AFAC, LDA ) 00330 CALL SLACPY( 'Full', N, NRHS, B, LDA, X, LDA ) 00331 * 00332 * Factor the matrix and solve the system using SSYSV. 00333 * 00334 SRNAMT = 'SSYSV ' 00335 CALL SSYSV( UPLO, N, NRHS, AFAC, LDA, IWORK, X, 00336 $ LDA, WORK, LWORK, INFO ) 00337 * 00338 * Adjust the expected value of INFO to account for 00339 * pivoting. 00340 * 00341 K = IZERO 00342 IF( K.GT.0 ) THEN 00343 100 CONTINUE 00344 IF( IWORK( K ).LT.0 ) THEN 00345 IF( IWORK( K ).NE.-K ) THEN 00346 K = -IWORK( K ) 00347 GO TO 100 00348 END IF 00349 ELSE IF( IWORK( K ).NE.K ) THEN 00350 K = IWORK( K ) 00351 GO TO 100 00352 END IF 00353 END IF 00354 * 00355 * Check error code from SSYSV . 00356 * 00357 IF( INFO.NE.K ) THEN 00358 CALL ALAERH( PATH, 'SSYSV ', INFO, K, UPLO, N, 00359 $ N, -1, -1, NRHS, IMAT, NFAIL, 00360 $ NERRS, NOUT ) 00361 GO TO 120 00362 ELSE IF( INFO.NE.0 ) THEN 00363 GO TO 120 00364 END IF 00365 * 00366 * Reconstruct matrix from factors and compute 00367 * residual. 00368 * 00369 CALL SSYT01( UPLO, N, A, LDA, AFAC, LDA, IWORK, 00370 $ AINV, LDA, RWORK, RESULT( 1 ) ) 00371 * 00372 * Compute residual of the computed solution. 00373 * 00374 CALL SLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA ) 00375 CALL SPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK, 00376 $ LDA, RWORK, RESULT( 2 ) ) 00377 * 00378 * Check solution from generated exact solution. 00379 * 00380 CALL SGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, 00381 $ RESULT( 3 ) ) 00382 NT = 3 00383 * 00384 * Print information about the tests that did not pass 00385 * the threshold. 00386 * 00387 DO 110 K = 1, NT 00388 IF( RESULT( K ).GE.THRESH ) THEN 00389 IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) 00390 $ CALL ALADHD( NOUT, PATH ) 00391 WRITE( NOUT, FMT = 9999 )'SSYSV ', UPLO, N, 00392 $ IMAT, K, RESULT( K ) 00393 NFAIL = NFAIL + 1 00394 END IF 00395 110 CONTINUE 00396 NRUN = NRUN + NT 00397 120 CONTINUE 00398 END IF 00399 * 00400 * --- Test SSYSVX --- 00401 * 00402 IF( IFACT.EQ.2 ) 00403 $ CALL SLASET( UPLO, N, N, ZERO, ZERO, AFAC, LDA ) 00404 CALL SLASET( 'Full', N, NRHS, ZERO, ZERO, X, LDA ) 00405 * 00406 * Solve the system and compute the condition number and 00407 * error bounds using SSYSVX. 00408 * 00409 SRNAMT = 'SSYSVX' 00410 CALL SSYSVX( FACT, UPLO, N, NRHS, A, LDA, AFAC, LDA, 00411 $ IWORK, B, LDA, X, LDA, RCOND, RWORK, 00412 $ RWORK( NRHS+1 ), WORK, LWORK, 00413 $ IWORK( N+1 ), INFO ) 00414 * 00415 * Adjust the expected value of INFO to account for 00416 * pivoting. 00417 * 00418 K = IZERO 00419 IF( K.GT.0 ) THEN 00420 130 CONTINUE 00421 IF( IWORK( K ).LT.0 ) THEN 00422 IF( IWORK( K ).NE.-K ) THEN 00423 K = -IWORK( K ) 00424 GO TO 130 00425 END IF 00426 ELSE IF( IWORK( K ).NE.K ) THEN 00427 K = IWORK( K ) 00428 GO TO 130 00429 END IF 00430 END IF 00431 * 00432 * Check the error code from SSYSVX. 00433 * 00434 IF( INFO.NE.K ) THEN 00435 CALL ALAERH( PATH, 'SSYSVX', INFO, K, FACT // UPLO, 00436 $ N, N, -1, -1, NRHS, IMAT, NFAIL, 00437 $ NERRS, NOUT ) 00438 GO TO 150 00439 END IF 00440 * 00441 IF( INFO.EQ.0 ) THEN 00442 IF( IFACT.GE.2 ) THEN 00443 * 00444 * Reconstruct matrix from factors and compute 00445 * residual. 00446 * 00447 CALL SSYT01( UPLO, N, A, LDA, AFAC, LDA, IWORK, 00448 $ AINV, LDA, RWORK( 2*NRHS+1 ), 00449 $ RESULT( 1 ) ) 00450 K1 = 1 00451 ELSE 00452 K1 = 2 00453 END IF 00454 * 00455 * Compute residual of the computed solution. 00456 * 00457 CALL SLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA ) 00458 CALL SPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK, 00459 $ LDA, RWORK( 2*NRHS+1 ), RESULT( 2 ) ) 00460 * 00461 * Check solution from generated exact solution. 00462 * 00463 CALL SGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, 00464 $ RESULT( 3 ) ) 00465 * 00466 * Check the error bounds from iterative refinement. 00467 * 00468 CALL SPOT05( UPLO, N, NRHS, A, LDA, B, LDA, X, LDA, 00469 $ XACT, LDA, RWORK, RWORK( NRHS+1 ), 00470 $ RESULT( 4 ) ) 00471 ELSE 00472 K1 = 6 00473 END IF 00474 * 00475 * Compare RCOND from SSYSVX with the computed value 00476 * in RCONDC. 00477 * 00478 RESULT( 6 ) = SGET06( RCOND, RCONDC ) 00479 * 00480 * Print information about the tests that did not pass 00481 * the threshold. 00482 * 00483 DO 140 K = K1, 6 00484 IF( RESULT( K ).GE.THRESH ) THEN 00485 IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) 00486 $ CALL ALADHD( NOUT, PATH ) 00487 WRITE( NOUT, FMT = 9998 )'SSYSVX', FACT, UPLO, 00488 $ N, IMAT, K, RESULT( K ) 00489 NFAIL = NFAIL + 1 00490 END IF 00491 140 CONTINUE 00492 NRUN = NRUN + 7 - K1 00493 * 00494 * --- Test SSYSVXX --- 00495 * 00496 * Restore the matrices A and B. 00497 * 00498 IF( IFACT.EQ.2 ) 00499 $ CALL SLASET( UPLO, N, N, ZERO, ZERO, AFAC, LDA ) 00500 CALL SLASET( 'Full', N, NRHS, ZERO, ZERO, X, LDA ) 00501 * 00502 * Solve the system and compute the condition number 00503 * and error bounds using SSYSVXX. 00504 * 00505 SRNAMT = 'SSYSVXX' 00506 N_ERR_BNDS = 3 00507 EQUED = 'N' 00508 CALL SSYSVXX( FACT, UPLO, N, NRHS, A, LDA, AFAC, 00509 $ LDA, IWORK, EQUED, WORK( N+1 ), B, LDA, X, 00510 $ LDA, RCOND, RPVGRW_SVXX, BERR, N_ERR_BNDS, 00511 $ ERRBNDS_N, ERRBNDS_C, 0, ZERO, WORK, 00512 $ IWORK( N+1 ), INFO ) 00513 * 00514 * Adjust the expected value of INFO to account for 00515 * pivoting. 00516 * 00517 K = IZERO 00518 IF( K.GT.0 ) THEN 00519 135 CONTINUE 00520 IF( IWORK( K ).LT.0 ) THEN 00521 IF( IWORK( K ).NE.-K ) THEN 00522 K = -IWORK( K ) 00523 GO TO 135 00524 END IF 00525 ELSE IF( IWORK( K ).NE.K ) THEN 00526 K = IWORK( K ) 00527 GO TO 135 00528 END IF 00529 END IF 00530 * 00531 * Check the error code from SSYSVXX. 00532 * 00533 IF( INFO.NE.K ) THEN 00534 CALL ALAERH( PATH, 'SSYSVXX', INFO, K, 00535 $ FACT // UPLO, N, N, -1, -1, NRHS, IMAT, NFAIL, 00536 $ NERRS, NOUT ) 00537 GO TO 150 00538 END IF 00539 * 00540 IF( INFO.EQ.0 ) THEN 00541 IF( IFACT.GE.2 ) THEN 00542 * 00543 * Reconstruct matrix from factors and compute 00544 * residual. 00545 * 00546 CALL SSYT01( UPLO, N, A, LDA, AFAC, LDA, IWORK, 00547 $ AINV, LDA, RWORK(2*NRHS+1), 00548 $ RESULT( 1 ) ) 00549 K1 = 1 00550 ELSE 00551 K1 = 2 00552 END IF 00553 * 00554 * Compute residual of the computed solution. 00555 * 00556 CALL SLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA ) 00557 CALL SPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK, 00558 $ LDA, RWORK( 2*NRHS+1 ), RESULT( 2 ) ) 00559 * 00560 * Check solution from generated exact solution. 00561 * 00562 CALL SGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, 00563 $ RESULT( 3 ) ) 00564 * 00565 * Check the error bounds from iterative refinement. 00566 * 00567 CALL SPOT05( UPLO, N, NRHS, A, LDA, B, LDA, X, LDA, 00568 $ XACT, LDA, RWORK, RWORK( NRHS+1 ), 00569 $ RESULT( 4 ) ) 00570 ELSE 00571 K1 = 6 00572 END IF 00573 * 00574 * Compare RCOND from SSYSVXX with the computed value 00575 * in RCONDC. 00576 * 00577 RESULT( 6 ) = SGET06( RCOND, RCONDC ) 00578 * 00579 * Print information about the tests that did not pass 00580 * the threshold. 00581 * 00582 DO 85 K = K1, 6 00583 IF( RESULT( K ).GE.THRESH ) THEN 00584 IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) 00585 $ CALL ALADHD( NOUT, PATH ) 00586 WRITE( NOUT, FMT = 9998 )'SSYSVXX', 00587 $ FACT, UPLO, N, IMAT, K, 00588 $ RESULT( K ) 00589 NFAIL = NFAIL + 1 00590 END IF 00591 85 CONTINUE 00592 NRUN = NRUN + 7 - K1 00593 * 00594 150 CONTINUE 00595 * 00596 160 CONTINUE 00597 170 CONTINUE 00598 180 CONTINUE 00599 * 00600 * Print a summary of the results. 00601 * 00602 CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS ) 00603 * 00604 00605 * Test Error Bounds from SSYSVXX 00606 00607 CALL SEBCHVXX(THRESH, PATH) 00608 00609 9999 FORMAT( 1X, A, ', UPLO=''', A1, ''', N =', I5, ', type ', I2, 00610 $ ', test ', I2, ', ratio =', G12.5 ) 00611 9998 FORMAT( 1X, A, ', FACT=''', A1, ''', UPLO=''', A1, ''', N =', I5, 00612 $ ', type ', I2, ', test ', I2, ', ratio =', G12.5 ) 00613 RETURN 00614 * 00615 * End of SDRVSY 00616 * 00617 END