LAPACK 3.3.1
Linear Algebra PACKage

clantp.f

Go to the documentation of this file.
00001       REAL             FUNCTION CLANTP( NORM, UPLO, DIAG, N, AP, WORK )
00002 *
00003 *  -- LAPACK auxiliary routine (version 3.2) --
00004 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00005 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00006 *     November 2006
00007 *
00008 *     .. Scalar Arguments ..
00009       CHARACTER          DIAG, NORM, UPLO
00010       INTEGER            N
00011 *     ..
00012 *     .. Array Arguments ..
00013       REAL               WORK( * )
00014       COMPLEX            AP( * )
00015 *     ..
00016 *
00017 *  Purpose
00018 *  =======
00019 *
00020 *  CLANTP  returns the value of the one norm,  or the Frobenius norm, or
00021 *  the  infinity norm,  or the  element of  largest absolute value  of a
00022 *  triangular matrix A, supplied in packed form.
00023 *
00024 *  Description
00025 *  ===========
00026 *
00027 *  CLANTP returns the value
00028 *
00029 *     CLANTP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
00030 *              (
00031 *              ( norm1(A),         NORM = '1', 'O' or 'o'
00032 *              (
00033 *              ( normI(A),         NORM = 'I' or 'i'
00034 *              (
00035 *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
00036 *
00037 *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
00038 *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
00039 *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
00040 *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
00041 *
00042 *  Arguments
00043 *  =========
00044 *
00045 *  NORM    (input) CHARACTER*1
00046 *          Specifies the value to be returned in CLANTP as described
00047 *          above.
00048 *
00049 *  UPLO    (input) CHARACTER*1
00050 *          Specifies whether the matrix A is upper or lower triangular.
00051 *          = 'U':  Upper triangular
00052 *          = 'L':  Lower triangular
00053 *
00054 *  DIAG    (input) CHARACTER*1
00055 *          Specifies whether or not the matrix A is unit triangular.
00056 *          = 'N':  Non-unit triangular
00057 *          = 'U':  Unit triangular
00058 *
00059 *  N       (input) INTEGER
00060 *          The order of the matrix A.  N >= 0.  When N = 0, CLANTP is
00061 *          set to zero.
00062 *
00063 *  AP      (input) COMPLEX array, dimension (N*(N+1)/2)
00064 *          The upper or lower triangular matrix A, packed columnwise in
00065 *          a linear array.  The j-th column of A is stored in the array
00066 *          AP as follows:
00067 *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
00068 *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
00069 *          Note that when DIAG = 'U', the elements of the array AP
00070 *          corresponding to the diagonal elements of the matrix A are
00071 *          not referenced, but are assumed to be one.
00072 *
00073 *  WORK    (workspace) REAL array, dimension (MAX(1,LWORK)),
00074 *          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
00075 *          referenced.
00076 *
00077 * =====================================================================
00078 *
00079 *     .. Parameters ..
00080       REAL               ONE, ZERO
00081       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
00082 *     ..
00083 *     .. Local Scalars ..
00084       LOGICAL            UDIAG
00085       INTEGER            I, J, K
00086       REAL               SCALE, SUM, VALUE
00087 *     ..
00088 *     .. External Functions ..
00089       LOGICAL            LSAME
00090       EXTERNAL           LSAME
00091 *     ..
00092 *     .. External Subroutines ..
00093       EXTERNAL           CLASSQ
00094 *     ..
00095 *     .. Intrinsic Functions ..
00096       INTRINSIC          ABS, MAX, SQRT
00097 *     ..
00098 *     .. Executable Statements ..
00099 *
00100       IF( N.EQ.0 ) THEN
00101          VALUE = ZERO
00102       ELSE IF( LSAME( NORM, 'M' ) ) THEN
00103 *
00104 *        Find max(abs(A(i,j))).
00105 *
00106          K = 1
00107          IF( LSAME( DIAG, 'U' ) ) THEN
00108             VALUE = ONE
00109             IF( LSAME( UPLO, 'U' ) ) THEN
00110                DO 20 J = 1, N
00111                   DO 10 I = K, K + J - 2
00112                      VALUE = MAX( VALUE, ABS( AP( I ) ) )
00113    10             CONTINUE
00114                   K = K + J
00115    20          CONTINUE
00116             ELSE
00117                DO 40 J = 1, N
00118                   DO 30 I = K + 1, K + N - J
00119                      VALUE = MAX( VALUE, ABS( AP( I ) ) )
00120    30             CONTINUE
00121                   K = K + N - J + 1
00122    40          CONTINUE
00123             END IF
00124          ELSE
00125             VALUE = ZERO
00126             IF( LSAME( UPLO, 'U' ) ) THEN
00127                DO 60 J = 1, N
00128                   DO 50 I = K, K + J - 1
00129                      VALUE = MAX( VALUE, ABS( AP( I ) ) )
00130    50             CONTINUE
00131                   K = K + J
00132    60          CONTINUE
00133             ELSE
00134                DO 80 J = 1, N
00135                   DO 70 I = K, K + N - J
00136                      VALUE = MAX( VALUE, ABS( AP( I ) ) )
00137    70             CONTINUE
00138                   K = K + N - J + 1
00139    80          CONTINUE
00140             END IF
00141          END IF
00142       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
00143 *
00144 *        Find norm1(A).
00145 *
00146          VALUE = ZERO
00147          K = 1
00148          UDIAG = LSAME( DIAG, 'U' )
00149          IF( LSAME( UPLO, 'U' ) ) THEN
00150             DO 110 J = 1, N
00151                IF( UDIAG ) THEN
00152                   SUM = ONE
00153                   DO 90 I = K, K + J - 2
00154                      SUM = SUM + ABS( AP( I ) )
00155    90             CONTINUE
00156                ELSE
00157                   SUM = ZERO
00158                   DO 100 I = K, K + J - 1
00159                      SUM = SUM + ABS( AP( I ) )
00160   100             CONTINUE
00161                END IF
00162                K = K + J
00163                VALUE = MAX( VALUE, SUM )
00164   110       CONTINUE
00165          ELSE
00166             DO 140 J = 1, N
00167                IF( UDIAG ) THEN
00168                   SUM = ONE
00169                   DO 120 I = K + 1, K + N - J
00170                      SUM = SUM + ABS( AP( I ) )
00171   120             CONTINUE
00172                ELSE
00173                   SUM = ZERO
00174                   DO 130 I = K, K + N - J
00175                      SUM = SUM + ABS( AP( I ) )
00176   130             CONTINUE
00177                END IF
00178                K = K + N - J + 1
00179                VALUE = MAX( VALUE, SUM )
00180   140       CONTINUE
00181          END IF
00182       ELSE IF( LSAME( NORM, 'I' ) ) THEN
00183 *
00184 *        Find normI(A).
00185 *
00186          K = 1
00187          IF( LSAME( UPLO, 'U' ) ) THEN
00188             IF( LSAME( DIAG, 'U' ) ) THEN
00189                DO 150 I = 1, N
00190                   WORK( I ) = ONE
00191   150          CONTINUE
00192                DO 170 J = 1, N
00193                   DO 160 I = 1, J - 1
00194                      WORK( I ) = WORK( I ) + ABS( AP( K ) )
00195                      K = K + 1
00196   160             CONTINUE
00197                   K = K + 1
00198   170          CONTINUE
00199             ELSE
00200                DO 180 I = 1, N
00201                   WORK( I ) = ZERO
00202   180          CONTINUE
00203                DO 200 J = 1, N
00204                   DO 190 I = 1, J
00205                      WORK( I ) = WORK( I ) + ABS( AP( K ) )
00206                      K = K + 1
00207   190             CONTINUE
00208   200          CONTINUE
00209             END IF
00210          ELSE
00211             IF( LSAME( DIAG, 'U' ) ) THEN
00212                DO 210 I = 1, N
00213                   WORK( I ) = ONE
00214   210          CONTINUE
00215                DO 230 J = 1, N
00216                   K = K + 1
00217                   DO 220 I = J + 1, N
00218                      WORK( I ) = WORK( I ) + ABS( AP( K ) )
00219                      K = K + 1
00220   220             CONTINUE
00221   230          CONTINUE
00222             ELSE
00223                DO 240 I = 1, N
00224                   WORK( I ) = ZERO
00225   240          CONTINUE
00226                DO 260 J = 1, N
00227                   DO 250 I = J, N
00228                      WORK( I ) = WORK( I ) + ABS( AP( K ) )
00229                      K = K + 1
00230   250             CONTINUE
00231   260          CONTINUE
00232             END IF
00233          END IF
00234          VALUE = ZERO
00235          DO 270 I = 1, N
00236             VALUE = MAX( VALUE, WORK( I ) )
00237   270    CONTINUE
00238       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
00239 *
00240 *        Find normF(A).
00241 *
00242          IF( LSAME( UPLO, 'U' ) ) THEN
00243             IF( LSAME( DIAG, 'U' ) ) THEN
00244                SCALE = ONE
00245                SUM = N
00246                K = 2
00247                DO 280 J = 2, N
00248                   CALL CLASSQ( J-1, AP( K ), 1, SCALE, SUM )
00249                   K = K + J
00250   280          CONTINUE
00251             ELSE
00252                SCALE = ZERO
00253                SUM = ONE
00254                K = 1
00255                DO 290 J = 1, N
00256                   CALL CLASSQ( J, AP( K ), 1, SCALE, SUM )
00257                   K = K + J
00258   290          CONTINUE
00259             END IF
00260          ELSE
00261             IF( LSAME( DIAG, 'U' ) ) THEN
00262                SCALE = ONE
00263                SUM = N
00264                K = 2
00265                DO 300 J = 1, N - 1
00266                   CALL CLASSQ( N-J, AP( K ), 1, SCALE, SUM )
00267                   K = K + N - J + 1
00268   300          CONTINUE
00269             ELSE
00270                SCALE = ZERO
00271                SUM = ONE
00272                K = 1
00273                DO 310 J = 1, N
00274                   CALL CLASSQ( N-J+1, AP( K ), 1, SCALE, SUM )
00275                   K = K + N - J + 1
00276   310          CONTINUE
00277             END IF
00278          END IF
00279          VALUE = SCALE*SQRT( SUM )
00280       END IF
00281 *
00282       CLANTP = VALUE
00283       RETURN
00284 *
00285 *     End of CLANTP
00286 *
00287       END
 All Files Functions