LAPACK 3.3.1
Linear Algebra PACKage

cla_gercond_c.f

Go to the documentation of this file.
00001       REAL FUNCTION CLA_GERCOND_C( TRANS, N, A, LDA, AF, LDAF, IPIV, C,
00002      $                             CAPPLY, INFO, WORK, RWORK )
00003 *
00004 *     -- LAPACK routine (version 3.2.1)                                 --
00005 *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
00006 *     -- Jason Riedy of Univ. of California Berkeley.                 --
00007 *     -- April 2009                                                   --
00008 *
00009 *     -- LAPACK is a software package provided by Univ. of Tennessee, --
00010 *     -- Univ. of California Berkeley and NAG Ltd.                    --
00011 *
00012       IMPLICIT NONE
00013 *     ..
00014 *     .. Scalar Aguments ..
00015       CHARACTER          TRANS
00016       LOGICAL            CAPPLY
00017       INTEGER            N, LDA, LDAF, INFO
00018 *     ..
00019 *     .. Array Arguments ..
00020       INTEGER            IPIV( * )
00021       COMPLEX            A( LDA, * ), AF( LDAF, * ), WORK( * )
00022       REAL               C( * ), RWORK( * )
00023 *     ..
00024 *
00025 *  Purpose
00026 *  =======
00027 * 
00028 *     CLA_GERCOND_C computes the infinity norm condition number of
00029 *     op(A) * inv(diag(C)) where C is a REAL vector.
00030 *
00031 *  Arguments
00032 *  =========
00033 *
00034 *     TRANS   (input) CHARACTER*1
00035 *     Specifies the form of the system of equations:
00036 *       = 'N':  A * X = B     (No transpose)
00037 *       = 'T':  A**T * X = B  (Transpose)
00038 *       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
00039 *
00040 *     N       (input) INTEGER
00041 *     The number of linear equations, i.e., the order of the
00042 *     matrix A.  N >= 0.
00043 *
00044 *     A       (input) COMPLEX array, dimension (LDA,N)
00045 *     On entry, the N-by-N matrix A
00046 *
00047 *     LDA     (input) INTEGER
00048 *     The leading dimension of the array A.  LDA >= max(1,N).
00049 *
00050 *     AF      (input) COMPLEX array, dimension (LDAF,N)
00051 *     The factors L and U from the factorization
00052 *     A = P*L*U as computed by CGETRF.
00053 *
00054 *     LDAF    (input) INTEGER
00055 *     The leading dimension of the array AF.  LDAF >= max(1,N).
00056 *
00057 *     IPIV    (input) INTEGER array, dimension (N)
00058 *     The pivot indices from the factorization A = P*L*U
00059 *     as computed by CGETRF; row i of the matrix was interchanged
00060 *     with row IPIV(i).
00061 *
00062 *     C       (input) REAL array, dimension (N)
00063 *     The vector C in the formula op(A) * inv(diag(C)).
00064 *
00065 *     CAPPLY  (input) LOGICAL
00066 *     If .TRUE. then access the vector C in the formula above.
00067 *
00068 *     INFO    (output) INTEGER
00069 *       = 0:  Successful exit.
00070 *     i > 0:  The ith argument is invalid.
00071 *
00072 *     WORK    (input) COMPLEX array, dimension (2*N).
00073 *     Workspace.
00074 *
00075 *     RWORK   (input) REAL array, dimension (N).
00076 *     Workspace.
00077 *
00078 *  =====================================================================
00079 *
00080 *     .. Local Scalars ..
00081       LOGICAL            NOTRANS
00082       INTEGER            KASE, I, J
00083       REAL               AINVNM, ANORM, TMP
00084       COMPLEX            ZDUM
00085 *     ..
00086 *     .. Local Arrays ..
00087       INTEGER            ISAVE( 3 )
00088 *     ..
00089 *     .. External Functions ..
00090       LOGICAL            LSAME
00091       EXTERNAL           LSAME
00092 *     ..
00093 *     .. External Subroutines ..
00094       EXTERNAL           CLACN2, CGETRS, XERBLA
00095 *     ..
00096 *     .. Intrinsic Functions ..
00097       INTRINSIC          ABS, MAX, REAL, AIMAG
00098 *     ..
00099 *     .. Statement Functions ..
00100       REAL               CABS1
00101 *     ..
00102 *     .. Statement Function Definitions ..
00103       CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
00104 *     ..
00105 *     .. Executable Statements ..
00106       CLA_GERCOND_C = 0.0E+0
00107 *
00108       INFO = 0
00109       NOTRANS = LSAME( TRANS, 'N' )
00110       IF ( .NOT. NOTRANS .AND. .NOT. LSAME( TRANS, 'T' ) .AND. .NOT.
00111      $     LSAME( TRANS, 'C' ) ) THEN
00112       ELSE IF( N.LT.0 ) THEN
00113          INFO = -2
00114       END IF
00115       IF( INFO.NE.0 ) THEN
00116          CALL XERBLA( 'CLA_GERCOND_C', -INFO )
00117          RETURN
00118       END IF
00119 *
00120 *     Compute norm of op(A)*op2(C).
00121 *
00122       ANORM = 0.0E+0
00123       IF ( NOTRANS ) THEN
00124          DO I = 1, N
00125             TMP = 0.0E+0
00126             IF ( CAPPLY ) THEN
00127                DO J = 1, N
00128                   TMP = TMP + CABS1( A( I, J ) ) / C( J )
00129                END DO
00130             ELSE
00131                DO J = 1, N
00132                   TMP = TMP + CABS1( A( I, J ) )
00133                END DO
00134             END IF
00135             RWORK( I ) = TMP
00136             ANORM = MAX( ANORM, TMP )
00137          END DO
00138       ELSE
00139          DO I = 1, N
00140             TMP = 0.0E+0
00141             IF ( CAPPLY ) THEN
00142                DO J = 1, N
00143                   TMP = TMP + CABS1( A( J, I ) ) / C( J )
00144                END DO
00145             ELSE
00146                DO J = 1, N
00147                   TMP = TMP + CABS1( A( J, I ) )
00148                END DO
00149             END IF
00150             RWORK( I ) = TMP
00151             ANORM = MAX( ANORM, TMP )
00152          END DO
00153       END IF
00154 *
00155 *     Quick return if possible.
00156 *
00157       IF( N.EQ.0 ) THEN
00158          CLA_GERCOND_C = 1.0E+0
00159          RETURN
00160       ELSE IF( ANORM .EQ. 0.0E+0 ) THEN
00161          RETURN
00162       END IF
00163 *
00164 *     Estimate the norm of inv(op(A)).
00165 *
00166       AINVNM = 0.0E+0
00167 *
00168       KASE = 0
00169    10 CONTINUE
00170       CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
00171       IF( KASE.NE.0 ) THEN
00172          IF( KASE.EQ.2 ) THEN
00173 *
00174 *           Multiply by R.
00175 *
00176             DO I = 1, N
00177                WORK( I ) = WORK( I ) * RWORK( I )
00178             END DO
00179 *
00180             IF (NOTRANS) THEN
00181                CALL CGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
00182      $            WORK, N, INFO )
00183             ELSE
00184                CALL CGETRS( 'Conjugate transpose', N, 1, AF, LDAF, IPIV,
00185      $            WORK, N, INFO )
00186             ENDIF
00187 *
00188 *           Multiply by inv(C).
00189 *
00190             IF ( CAPPLY ) THEN
00191                DO I = 1, N
00192                   WORK( I ) = WORK( I ) * C( I )
00193                END DO
00194             END IF
00195          ELSE
00196 *
00197 *           Multiply by inv(C**H).
00198 *
00199             IF ( CAPPLY ) THEN
00200                DO I = 1, N
00201                   WORK( I ) = WORK( I ) * C( I )
00202                END DO
00203             END IF
00204 *
00205             IF ( NOTRANS ) THEN
00206                CALL CGETRS( 'Conjugate transpose', N, 1, AF, LDAF, IPIV,
00207      $            WORK, N, INFO )
00208             ELSE
00209                CALL CGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
00210      $            WORK, N, INFO )
00211             END IF
00212 *
00213 *           Multiply by R.
00214 *
00215             DO I = 1, N
00216                WORK( I ) = WORK( I ) * RWORK( I )
00217             END DO
00218          END IF
00219          GO TO 10
00220       END IF
00221 *
00222 *     Compute the estimate of the reciprocal condition number.
00223 *
00224       IF( AINVNM .NE. 0.0E+0 )
00225      $   CLA_GERCOND_C = 1.0E+0 / AINVNM
00226 *
00227       RETURN
00228 *
00229       END
 All Files Functions