LAPACK 3.3.1
Linear Algebra PACKage

cdrvls.f

Go to the documentation of this file.
00001       SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
00002      $                   NBVAL, NXVAL, THRESH, TSTERR, A, COPYA, B,
00003      $                   COPYB, C, S, COPYS, WORK, RWORK, IWORK,
00004      $                   NOUT )
00005 *
00006 *  -- LAPACK test routine (version 3.1.1) --
00007 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
00008 *     January 2007
00009 *
00010 *     .. Scalar Arguments ..
00011       LOGICAL            TSTERR
00012       INTEGER            NM, NN, NNB, NNS, NOUT
00013       REAL               THRESH
00014 *     ..
00015 *     .. Array Arguments ..
00016       LOGICAL            DOTYPE( * )
00017       INTEGER            IWORK( * ), MVAL( * ), NBVAL( * ), NSVAL( * ),
00018      $                   NVAL( * ), NXVAL( * )
00019       REAL               COPYS( * ), RWORK( * ), S( * )
00020       COMPLEX            A( * ), B( * ), C( * ), COPYA( * ), COPYB( * ),
00021      $                   WORK( * )
00022 *     ..
00023 *
00024 *  Purpose
00025 *  =======
00026 *
00027 *  CDRVLS tests the least squares driver routines CGELS, CGELSX, CGELSS,
00028 *  CGELSY and CGELSD.
00029 *
00030 *  Arguments
00031 *  =========
00032 *
00033 *  DOTYPE  (input) LOGICAL array, dimension (NTYPES)
00034 *          The matrix types to be used for testing.  Matrices of type j
00035 *          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
00036 *          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
00037 *          The matrix of type j is generated as follows:
00038 *          j=1: A = U*D*V where U and V are random unitary matrices
00039 *               and D has random entries (> 0.1) taken from a uniform
00040 *               distribution (0,1). A is full rank.
00041 *          j=2: The same of 1, but A is scaled up.
00042 *          j=3: The same of 1, but A is scaled down.
00043 *          j=4: A = U*D*V where U and V are random unitary matrices
00044 *               and D has 3*min(M,N)/4 random entries (> 0.1) taken
00045 *               from a uniform distribution (0,1) and the remaining
00046 *               entries set to 0. A is rank-deficient.
00047 *          j=5: The same of 4, but A is scaled up.
00048 *          j=6: The same of 5, but A is scaled down.
00049 *
00050 *  NM      (input) INTEGER
00051 *          The number of values of M contained in the vector MVAL.
00052 *
00053 *  MVAL    (input) INTEGER array, dimension (NM)
00054 *          The values of the matrix row dimension M.
00055 *
00056 *  NN      (input) INTEGER
00057 *          The number of values of N contained in the vector NVAL.
00058 *
00059 *  NVAL    (input) INTEGER array, dimension (NN)
00060 *          The values of the matrix column dimension N.
00061 *
00062 *  NNB     (input) INTEGER
00063 *          The number of values of NB and NX contained in the
00064 *          vectors NBVAL and NXVAL.  The blocking parameters are used
00065 *          in pairs (NB,NX).
00066 *
00067 *  NBVAL   (input) INTEGER array, dimension (NNB)
00068 *          The values of the blocksize NB.
00069 *
00070 *  NXVAL   (input) INTEGER array, dimension (NNB)
00071 *          The values of the crossover point NX.
00072 *
00073 *  NNS     (input) INTEGER
00074 *          The number of values of NRHS contained in the vector NSVAL.
00075 *
00076 *  NSVAL   (input) INTEGER array, dimension (NNS)
00077 *          The values of the number of right hand sides NRHS.
00078 *
00079 *  THRESH  (input) REAL
00080 *          The threshold value for the test ratios.  A result is
00081 *          included in the output file if RESULT >= THRESH.  To have
00082 *          every test ratio printed, use THRESH = 0.
00083 *
00084 *  TSTERR  (input) LOGICAL
00085 *          Flag that indicates whether error exits are to be tested.
00086 *
00087 *  A       (workspace) COMPLEX array, dimension (MMAX*NMAX)
00088 *          where MMAX is the maximum value of M in MVAL and NMAX is the
00089 *          maximum value of N in NVAL.
00090 *
00091 *  COPYA   (workspace) COMPLEX array, dimension (MMAX*NMAX)
00092 *
00093 *  B       (workspace) COMPLEX array, dimension (MMAX*NSMAX)
00094 *          where MMAX is the maximum value of M in MVAL and NSMAX is the
00095 *          maximum value of NRHS in NSVAL.
00096 *
00097 *  COPYB   (workspace) COMPLEX array, dimension (MMAX*NSMAX)
00098 *
00099 *  C       (workspace) COMPLEX array, dimension (MMAX*NSMAX)
00100 *
00101 *  S       (workspace) REAL array, dimension
00102 *                      (min(MMAX,NMAX))
00103 *
00104 *  COPYS   (workspace) REAL array, dimension
00105 *                      (min(MMAX,NMAX))
00106 *
00107 *  WORK    (workspace) COMPLEX array, dimension
00108 *                      (MMAX*NMAX + 4*NMAX + MMAX).
00109 *
00110 *  RWORK   (workspace) REAL array, dimension (5*NMAX-1)
00111 *
00112 *  IWORK   (workspace) INTEGER array, dimension (15*NMAX)
00113 *
00114 *  NOUT    (input) INTEGER
00115 *          The unit number for output.
00116 *
00117 *  =====================================================================
00118 *
00119 *     .. Parameters ..
00120       INTEGER            NTESTS
00121       PARAMETER          ( NTESTS = 18 )
00122       INTEGER            SMLSIZ
00123       PARAMETER          ( SMLSIZ = 25 )
00124       REAL               ONE, ZERO
00125       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
00126       COMPLEX            CONE, CZERO
00127       PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ),
00128      $                   CZERO = ( 0.0E+0, 0.0E+0 ) )
00129 *     ..
00130 *     .. Local Scalars ..
00131       CHARACTER          TRANS
00132       CHARACTER*3        PATH
00133       INTEGER            CRANK, I, IM, IN, INB, INFO, INS, IRANK,
00134      $                   ISCALE, ITRAN, ITYPE, J, K, LDA, LDB, LDWORK,
00135      $                   LWLSY, LWORK, M, MNMIN, N, NB, NCOLS, NERRS,
00136      $                   NFAIL, NRHS, NROWS, NRUN, RANK
00137       REAL               EPS, NORMA, NORMB, RCOND
00138 *     ..
00139 *     .. Local Arrays ..
00140       INTEGER            ISEED( 4 ), ISEEDY( 4 )
00141       REAL               RESULT( NTESTS )
00142 *     ..
00143 *     .. External Functions ..
00144       REAL               CQRT12, CQRT14, CQRT17, SASUM, SLAMCH
00145       EXTERNAL           CQRT12, CQRT14, CQRT17, SASUM, SLAMCH
00146 *     ..
00147 *     .. External Subroutines ..
00148       EXTERNAL           ALAERH, ALAHD, ALASVM, CERRLS, CGELS, CGELSD,
00149      $                   CGELSS, CGELSX, CGELSY, CGEMM, CLACPY, CLARNV,
00150      $                   CQRT13, CQRT15, CQRT16, CSSCAL, SAXPY, 
00151      $                   XLAENV
00152 *     ..
00153 *     .. Intrinsic Functions ..
00154       INTRINSIC          MAX, MIN, REAL, SQRT
00155 *     ..
00156 *     .. Scalars in Common ..
00157       LOGICAL            LERR, OK
00158       CHARACTER*32       SRNAMT
00159       INTEGER            INFOT, IOUNIT
00160 *     ..
00161 *     .. Common blocks ..
00162       COMMON             / INFOC / INFOT, IOUNIT, OK, LERR
00163       COMMON             / SRNAMC / SRNAMT
00164 *     ..
00165 *     .. Data statements ..
00166       DATA               ISEEDY / 1988, 1989, 1990, 1991 /
00167 *     ..
00168 *     .. Executable Statements ..
00169 *
00170 *     Initialize constants and the random number seed.
00171 *
00172       PATH( 1: 1 ) = 'Complex precision'
00173       PATH( 2: 3 ) = 'LS'
00174       NRUN = 0
00175       NFAIL = 0
00176       NERRS = 0
00177       DO 10 I = 1, 4
00178          ISEED( I ) = ISEEDY( I )
00179    10 CONTINUE
00180       EPS = SLAMCH( 'Epsilon' )
00181 *
00182 *     Threshold for rank estimation
00183 *
00184       RCOND = SQRT( EPS ) - ( SQRT( EPS )-EPS ) / 2
00185 *
00186 *     Test the error exits
00187 *
00188       CALL XLAENV( 9, SMLSIZ )
00189       IF( TSTERR )
00190      $   CALL CERRLS( PATH, NOUT )
00191 *
00192 *     Print the header if NM = 0 or NN = 0 and THRESH = 0.
00193 *
00194       IF( ( NM.EQ.0 .OR. NN.EQ.0 ) .AND. THRESH.EQ.ZERO )
00195      $   CALL ALAHD( NOUT, PATH )
00196       INFOT = 0
00197 *
00198       DO 140 IM = 1, NM
00199          M = MVAL( IM )
00200          LDA = MAX( 1, M )
00201 *
00202          DO 130 IN = 1, NN
00203             N = NVAL( IN )
00204             MNMIN = MIN( M, N )
00205             LDB = MAX( 1, M, N )
00206 *
00207             DO 120 INS = 1, NNS
00208                NRHS = NSVAL( INS )
00209                LWORK = MAX( 1, ( M+NRHS )*( N+2 ), ( N+NRHS )*( M+2 ),
00210      $                 M*N+4*MNMIN+MAX( M, N ), 2*N+M )
00211 *
00212                DO 110 IRANK = 1, 2
00213                   DO 100 ISCALE = 1, 3
00214                      ITYPE = ( IRANK-1 )*3 + ISCALE
00215                      IF( .NOT.DOTYPE( ITYPE ) )
00216      $                  GO TO 100
00217 *
00218                      IF( IRANK.EQ.1 ) THEN
00219 *
00220 *                       Test CGELS
00221 *
00222 *                       Generate a matrix of scaling type ISCALE
00223 *
00224                         CALL CQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
00225      $                               ISEED )
00226                         DO 40 INB = 1, NNB
00227                            NB = NBVAL( INB )
00228                            CALL XLAENV( 1, NB )
00229                            CALL XLAENV( 3, NXVAL( INB ) )
00230 *
00231                            DO 30 ITRAN = 1, 2
00232                               IF( ITRAN.EQ.1 ) THEN
00233                                  TRANS = 'N'
00234                                  NROWS = M
00235                                  NCOLS = N
00236                               ELSE
00237                                  TRANS = 'C'
00238                                  NROWS = N
00239                                  NCOLS = M
00240                               END IF
00241                               LDWORK = MAX( 1, NCOLS )
00242 *
00243 *                             Set up a consistent rhs
00244 *
00245                               IF( NCOLS.GT.0 ) THEN
00246                                  CALL CLARNV( 2, ISEED, NCOLS*NRHS,
00247      $                                        WORK )
00248                                  CALL CSSCAL( NCOLS*NRHS,
00249      $                                        ONE / REAL( NCOLS ), WORK,
00250      $                                        1 )
00251                               END IF
00252                               CALL CGEMM( TRANS, 'No transpose', NROWS,
00253      $                                    NRHS, NCOLS, CONE, COPYA, LDA,
00254      $                                    WORK, LDWORK, CZERO, B, LDB )
00255                               CALL CLACPY( 'Full', NROWS, NRHS, B, LDB,
00256      $                                     COPYB, LDB )
00257 *
00258 *                             Solve LS or overdetermined system
00259 *
00260                               IF( M.GT.0 .AND. N.GT.0 ) THEN
00261                                  CALL CLACPY( 'Full', M, N, COPYA, LDA,
00262      $                                        A, LDA )
00263                                  CALL CLACPY( 'Full', NROWS, NRHS,
00264      $                                        COPYB, LDB, B, LDB )
00265                               END IF
00266                               SRNAMT = 'CGELS '
00267                               CALL CGELS( TRANS, M, N, NRHS, A, LDA, B,
00268      $                                    LDB, WORK, LWORK, INFO )
00269 *
00270                               IF( INFO.NE.0 )
00271      $                           CALL ALAERH( PATH, 'CGELS ', INFO, 0,
00272      $                                        TRANS, M, N, NRHS, -1, NB,
00273      $                                        ITYPE, NFAIL, NERRS,
00274      $                                        NOUT )
00275 *
00276 *                             Check correctness of results
00277 *
00278                               LDWORK = MAX( 1, NROWS )
00279                               IF( NROWS.GT.0 .AND. NRHS.GT.0 )
00280      $                           CALL CLACPY( 'Full', NROWS, NRHS,
00281      $                                        COPYB, LDB, C, LDB )
00282                               CALL CQRT16( TRANS, M, N, NRHS, COPYA,
00283      $                                     LDA, B, LDB, C, LDB, RWORK,
00284      $                                     RESULT( 1 ) )
00285 *
00286                               IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
00287      $                            ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
00288 *
00289 *                                Solving LS system
00290 *
00291                                  RESULT( 2 ) = CQRT17( TRANS, 1, M, N,
00292      $                                         NRHS, COPYA, LDA, B, LDB,
00293      $                                         COPYB, LDB, C, WORK,
00294      $                                         LWORK )
00295                               ELSE
00296 *
00297 *                                Solving overdetermined system
00298 *
00299                                  RESULT( 2 ) = CQRT14( TRANS, M, N,
00300      $                                         NRHS, COPYA, LDA, B, LDB,
00301      $                                         WORK, LWORK )
00302                               END IF
00303 *
00304 *                             Print information about the tests that
00305 *                             did not pass the threshold.
00306 *
00307                               DO 20 K = 1, 2
00308                                  IF( RESULT( K ).GE.THRESH ) THEN
00309                                     IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00310      $                                 CALL ALAHD( NOUT, PATH )
00311                                     WRITE( NOUT, FMT = 9999 )TRANS, M,
00312      $                                 N, NRHS, NB, ITYPE, K,
00313      $                                 RESULT( K )
00314                                     NFAIL = NFAIL + 1
00315                                  END IF
00316    20                         CONTINUE
00317                               NRUN = NRUN + 2
00318    30                      CONTINUE
00319    40                   CONTINUE
00320                      END IF
00321 *
00322 *                    Generate a matrix of scaling type ISCALE and rank
00323 *                    type IRANK.
00324 *
00325                      CALL CQRT15( ISCALE, IRANK, M, N, NRHS, COPYA, LDA,
00326      $                            COPYB, LDB, COPYS, RANK, NORMA, NORMB,
00327      $                            ISEED, WORK, LWORK )
00328 *
00329 *                    workspace used: MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M)
00330 *
00331                      DO 50 J = 1, N
00332                         IWORK( J ) = 0
00333    50                CONTINUE
00334                      LDWORK = MAX( 1, M )
00335 *
00336 *                    Test CGELSX
00337 *
00338 *                    CGELSX:  Compute the minimum-norm solution X
00339 *                    to min( norm( A * X - B ) )
00340 *                    using a complete orthogonal factorization.
00341 *
00342                      CALL CLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
00343                      CALL CLACPY( 'Full', M, NRHS, COPYB, LDB, B, LDB )
00344 *
00345                      SRNAMT = 'CGELSX'
00346                      CALL CGELSX( M, N, NRHS, A, LDA, B, LDB, IWORK,
00347      $                            RCOND, CRANK, WORK, RWORK, INFO )
00348 *
00349                      IF( INFO.NE.0 )
00350      $                  CALL ALAERH( PATH, 'CGELSX', INFO, 0, ' ', M, N,
00351      $                               NRHS, -1, NB, ITYPE, NFAIL, NERRS,
00352      $                               NOUT )
00353 *
00354 *                    workspace used: MAX( MNMIN+3*N, 2*MNMIN+NRHS )
00355 *
00356 *                    Test 3:  Compute relative error in svd
00357 *                             workspace: M*N + 4*MIN(M,N) + MAX(M,N)
00358 *
00359                      RESULT( 3 ) = CQRT12( CRANK, CRANK, A, LDA, COPYS,
00360      $                             WORK, LWORK, RWORK )
00361 *
00362 *                    Test 4:  Compute error in solution
00363 *                             workspace:  M*NRHS + M
00364 *
00365                      CALL CLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
00366      $                            LDWORK )
00367                      CALL CQRT16( 'No transpose', M, N, NRHS, COPYA,
00368      $                            LDA, B, LDB, WORK, LDWORK, RWORK,
00369      $                            RESULT( 4 ) )
00370 *
00371 *                    Test 5:  Check norm of r'*A
00372 *                             workspace: NRHS*(M+N)
00373 *
00374                      RESULT( 5 ) = ZERO
00375                      IF( M.GT.CRANK )
00376      $                  RESULT( 5 ) = CQRT17( 'No transpose', 1, M, N,
00377      $                                NRHS, COPYA, LDA, B, LDB, COPYB,
00378      $                                LDB, C, WORK, LWORK )
00379 *
00380 *                    Test 6:  Check if x is in the rowspace of A
00381 *                             workspace: (M+NRHS)*(N+2)
00382 *
00383                      RESULT( 6 ) = ZERO
00384 *
00385                      IF( N.GT.CRANK )
00386      $                  RESULT( 6 ) = CQRT14( 'No transpose', M, N,
00387      $                                NRHS, COPYA, LDA, B, LDB, WORK,
00388      $                                LWORK )
00389 *
00390 *                    Print information about the tests that did not
00391 *                    pass the threshold.
00392 *
00393                      DO 60 K = 3, 6
00394                         IF( RESULT( K ).GE.THRESH ) THEN
00395                            IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00396      $                        CALL ALAHD( NOUT, PATH )
00397                            WRITE( NOUT, FMT = 9998 )M, N, NRHS, 0,
00398      $                        ITYPE, K, RESULT( K )
00399                            NFAIL = NFAIL + 1
00400                         END IF
00401    60                CONTINUE
00402                      NRUN = NRUN + 4
00403 *
00404 *                    Loop for testing different block sizes.
00405 *
00406                      DO 90 INB = 1, NNB
00407                         NB = NBVAL( INB )
00408                         CALL XLAENV( 1, NB )
00409                         CALL XLAENV( 3, NXVAL( INB ) )
00410 *
00411 *                       Test CGELSY
00412 *
00413 *                       CGELSY:  Compute the minimum-norm solution
00414 *                       X to min( norm( A * X - B ) )
00415 *                       using the rank-revealing orthogonal
00416 *                       factorization.
00417 *
00418                         CALL CLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
00419                         CALL CLACPY( 'Full', M, NRHS, COPYB, LDB, B,
00420      $                               LDB )
00421 *
00422 *                       Initialize vector IWORK.
00423 *
00424                         DO 70 J = 1, N
00425                            IWORK( J ) = 0
00426    70                   CONTINUE
00427 *
00428 *                       Set LWLSY to the adequate value.
00429 *
00430                         LWLSY = MNMIN + MAX( 2*MNMIN, NB*( N+1 ),
00431      $                          MNMIN+NB*NRHS )
00432                         LWLSY = MAX( 1, LWLSY )
00433 *
00434                         SRNAMT = 'CGELSY'
00435                         CALL CGELSY( M, N, NRHS, A, LDA, B, LDB, IWORK,
00436      $                               RCOND, CRANK, WORK, LWLSY, RWORK,
00437      $                               INFO )
00438                         IF( INFO.NE.0 )
00439      $                     CALL ALAERH( PATH, 'CGELSY', INFO, 0, ' ', M,
00440      $                                  N, NRHS, -1, NB, ITYPE, NFAIL,
00441      $                                  NERRS, NOUT )
00442 *
00443 *                       workspace used: 2*MNMIN+NB*NB+NB*MAX(N,NRHS)
00444 *
00445 *                       Test 7:  Compute relative error in svd
00446 *                                workspace: M*N + 4*MIN(M,N) + MAX(M,N)
00447 *
00448                         RESULT( 7 ) = CQRT12( CRANK, CRANK, A, LDA,
00449      $                                COPYS, WORK, LWORK, RWORK )
00450 *
00451 *                       Test 8:  Compute error in solution
00452 *                                workspace:  M*NRHS + M
00453 *
00454                         CALL CLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
00455      $                               LDWORK )
00456                         CALL CQRT16( 'No transpose', M, N, NRHS, COPYA,
00457      $                               LDA, B, LDB, WORK, LDWORK, RWORK,
00458      $                               RESULT( 8 ) )
00459 *
00460 *                       Test 9:  Check norm of r'*A
00461 *                                workspace: NRHS*(M+N)
00462 *
00463                         RESULT( 9 ) = ZERO
00464                         IF( M.GT.CRANK )
00465      $                     RESULT( 9 ) = CQRT17( 'No transpose', 1, M,
00466      $                                   N, NRHS, COPYA, LDA, B, LDB,
00467      $                                   COPYB, LDB, C, WORK, LWORK )
00468 *
00469 *                       Test 10:  Check if x is in the rowspace of A
00470 *                                workspace: (M+NRHS)*(N+2)
00471 *
00472                         RESULT( 10 ) = ZERO
00473 *
00474                         IF( N.GT.CRANK )
00475      $                     RESULT( 10 ) = CQRT14( 'No transpose', M, N,
00476      $                                    NRHS, COPYA, LDA, B, LDB,
00477      $                                    WORK, LWORK )
00478 *
00479 *                       Test CGELSS
00480 *
00481 *                       CGELSS:  Compute the minimum-norm solution
00482 *                       X to min( norm( A * X - B ) )
00483 *                       using the SVD.
00484 *
00485                         CALL CLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
00486                         CALL CLACPY( 'Full', M, NRHS, COPYB, LDB, B,
00487      $                               LDB )
00488                         SRNAMT = 'CGELSS'
00489                         CALL CGELSS( M, N, NRHS, A, LDA, B, LDB, S,
00490      $                               RCOND, CRANK, WORK, LWORK, RWORK,
00491      $                               INFO )
00492 *
00493                         IF( INFO.NE.0 )
00494      $                     CALL ALAERH( PATH, 'CGELSS', INFO, 0, ' ', M,
00495      $                                  N, NRHS, -1, NB, ITYPE, NFAIL,
00496      $                                  NERRS, NOUT )
00497 *
00498 *                       workspace used: 3*min(m,n) +
00499 *                                       max(2*min(m,n),nrhs,max(m,n))
00500 *
00501 *                       Test 11:  Compute relative error in svd
00502 *
00503                         IF( RANK.GT.0 ) THEN
00504                            CALL SAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
00505                            RESULT( 11 ) = SASUM( MNMIN, S, 1 ) /
00506      $                                    SASUM( MNMIN, COPYS, 1 ) /
00507      $                                    ( EPS*REAL( MNMIN ) )
00508                         ELSE
00509                            RESULT( 11 ) = ZERO
00510                         END IF
00511 *
00512 *                       Test 12:  Compute error in solution
00513 *
00514                         CALL CLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
00515      $                               LDWORK )
00516                         CALL CQRT16( 'No transpose', M, N, NRHS, COPYA,
00517      $                               LDA, B, LDB, WORK, LDWORK, RWORK,
00518      $                               RESULT( 12 ) )
00519 *
00520 *                       Test 13:  Check norm of r'*A
00521 *
00522                         RESULT( 13 ) = ZERO
00523                         IF( M.GT.CRANK )
00524      $                     RESULT( 13 ) = CQRT17( 'No transpose', 1, M,
00525      $                                    N, NRHS, COPYA, LDA, B, LDB,
00526      $                                    COPYB, LDB, C, WORK, LWORK )
00527 *
00528 *                       Test 14:  Check if x is in the rowspace of A
00529 *
00530                         RESULT( 14 ) = ZERO
00531                         IF( N.GT.CRANK )
00532      $                     RESULT( 14 ) = CQRT14( 'No transpose', M, N,
00533      $                                    NRHS, COPYA, LDA, B, LDB,
00534      $                                    WORK, LWORK )
00535 *
00536 *                       Test CGELSD
00537 *
00538 *                       CGELSD:  Compute the minimum-norm solution X
00539 *                       to min( norm( A * X - B ) ) using a
00540 *                       divide and conquer SVD.
00541 *
00542                         CALL XLAENV( 9, 25 )
00543 *
00544                         CALL CLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
00545                         CALL CLACPY( 'Full', M, NRHS, COPYB, LDB, B,
00546      $                               LDB )
00547 *
00548                         SRNAMT = 'CGELSD'
00549                         CALL CGELSD( M, N, NRHS, A, LDA, B, LDB, S,
00550      $                               RCOND, CRANK, WORK, LWORK, RWORK,
00551      $                               IWORK, INFO )
00552                         IF( INFO.NE.0 )
00553      $                     CALL ALAERH( PATH, 'CGELSD', INFO, 0, ' ', M,
00554      $                                  N, NRHS, -1, NB, ITYPE, NFAIL,
00555      $                                  NERRS, NOUT )
00556 *
00557 *                       Test 15:  Compute relative error in svd
00558 *
00559                         IF( RANK.GT.0 ) THEN
00560                            CALL SAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
00561                            RESULT( 15 ) = SASUM( MNMIN, S, 1 ) /
00562      $                                    SASUM( MNMIN, COPYS, 1 ) /
00563      $                                    ( EPS*REAL( MNMIN ) )
00564                         ELSE
00565                            RESULT( 15 ) = ZERO
00566                         END IF
00567 *
00568 *                       Test 16:  Compute error in solution
00569 *
00570                         CALL CLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
00571      $                               LDWORK )
00572                         CALL CQRT16( 'No transpose', M, N, NRHS, COPYA,
00573      $                               LDA, B, LDB, WORK, LDWORK, RWORK,
00574      $                               RESULT( 16 ) )
00575 *
00576 *                       Test 17:  Check norm of r'*A
00577 *
00578                         RESULT( 17 ) = ZERO
00579                         IF( M.GT.CRANK )
00580      $                     RESULT( 17 ) = CQRT17( 'No transpose', 1, M,
00581      $                                    N, NRHS, COPYA, LDA, B, LDB,
00582      $                                    COPYB, LDB, C, WORK, LWORK )
00583 *
00584 *                       Test 18:  Check if x is in the rowspace of A
00585 *
00586                         RESULT( 18 ) = ZERO
00587                         IF( N.GT.CRANK )
00588      $                     RESULT( 18 ) = CQRT14( 'No transpose', M, N,
00589      $                                    NRHS, COPYA, LDA, B, LDB,
00590      $                                    WORK, LWORK )
00591 *
00592 *                       Print information about the tests that did not
00593 *                       pass the threshold.
00594 *
00595                         DO 80 K = 7, NTESTS
00596                            IF( RESULT( K ).GE.THRESH ) THEN
00597                               IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00598      $                           CALL ALAHD( NOUT, PATH )
00599                               WRITE( NOUT, FMT = 9998 )M, N, NRHS, NB,
00600      $                           ITYPE, K, RESULT( K )
00601                               NFAIL = NFAIL + 1
00602                            END IF
00603    80                   CONTINUE
00604                         NRUN = NRUN + 12
00605 *
00606    90                CONTINUE
00607   100             CONTINUE
00608   110          CONTINUE
00609   120       CONTINUE
00610   130    CONTINUE
00611   140 CONTINUE
00612 *
00613 *     Print a summary of the results.
00614 *
00615       CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
00616 *
00617  9999 FORMAT( ' TRANS=''', A1, ''', M=', I5, ', N=', I5, ', NRHS=', I4,
00618      $      ', NB=', I4, ', type', I2, ', test(', I2, ')=', G12.5 )
00619  9998 FORMAT( ' M=', I5, ', N=', I5, ', NRHS=', I4, ', NB=', I4,
00620      $      ', type', I2, ', test(', I2, ')=', G12.5 )
00621       RETURN
00622 *
00623 *     End of CDRVLS
00624 *
00625       END
 All Files Functions