LAPACK 3.3.1
Linear Algebra PACKage
|
00001 SUBROUTINE DLATME( N, DIST, ISEED, D, MODE, COND, DMAX, EI, 00002 $ RSIGN, 00003 $ UPPER, SIM, DS, MODES, CONDS, KL, KU, ANORM, 00004 $ A, 00005 $ LDA, WORK, INFO ) 00006 * 00007 * -- LAPACK test routine (version 3.1) -- 00008 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 00009 * June 2010 00010 * 00011 * .. Scalar Arguments .. 00012 CHARACTER DIST, RSIGN, SIM, UPPER 00013 INTEGER INFO, KL, KU, LDA, MODE, MODES, N 00014 DOUBLE PRECISION ANORM, COND, CONDS, DMAX 00015 * .. 00016 * .. Array Arguments .. 00017 CHARACTER EI( * ) 00018 INTEGER ISEED( 4 ) 00019 DOUBLE PRECISION A( LDA, * ), D( * ), DS( * ), WORK( * ) 00020 * .. 00021 * 00022 * Purpose 00023 * ======= 00024 * 00025 * DLATME generates random non-symmetric square matrices with 00026 * specified eigenvalues for testing LAPACK programs. 00027 * 00028 * DLATME operates by applying the following sequence of 00029 * operations: 00030 * 00031 * 1. Set the diagonal to D, where D may be input or 00032 * computed according to MODE, COND, DMAX, and RSIGN 00033 * as described below. 00034 * 00035 * 2. If complex conjugate pairs are desired (MODE=0 and EI(1)='R', 00036 * or MODE=5), certain pairs of adjacent elements of D are 00037 * interpreted as the real and complex parts of a complex 00038 * conjugate pair; A thus becomes block diagonal, with 1x1 00039 * and 2x2 blocks. 00040 * 00041 * 3. If UPPER='T', the upper triangle of A is set to random values 00042 * out of distribution DIST. 00043 * 00044 * 4. If SIM='T', A is multiplied on the left by a random matrix 00045 * X, whose singular values are specified by DS, MODES, and 00046 * CONDS, and on the right by X inverse. 00047 * 00048 * 5. If KL < N-1, the lower bandwidth is reduced to KL using 00049 * Householder transformations. If KU < N-1, the upper 00050 * bandwidth is reduced to KU. 00051 * 00052 * 6. If ANORM is not negative, the matrix is scaled to have 00053 * maximum-element-norm ANORM. 00054 * 00055 * (Note: since the matrix cannot be reduced beyond Hessenberg form, 00056 * no packing options are available.) 00057 * 00058 * Arguments 00059 * ========= 00060 * 00061 * N (input) INTEGER 00062 * The number of columns (or rows) of A. Not modified. 00063 * 00064 * DIST (input) CHARACTER*1 00065 * On entry, DIST specifies the type of distribution to be used 00066 * to generate the random eigen-/singular values, and for the 00067 * upper triangle (see UPPER). 00068 * 'U' => UNIFORM( 0, 1 ) ( 'U' for uniform ) 00069 * 'S' => UNIFORM( -1, 1 ) ( 'S' for symmetric ) 00070 * 'N' => NORMAL( 0, 1 ) ( 'N' for normal ) 00071 * Not modified. 00072 * 00073 * ISEED (input/output) INTEGER array, dimension ( 4 ) 00074 * On entry ISEED specifies the seed of the random number 00075 * generator. They should lie between 0 and 4095 inclusive, 00076 * and ISEED(4) should be odd. The random number generator 00077 * uses a linear congruential sequence limited to small 00078 * integers, and so should produce machine independent 00079 * random numbers. The values of ISEED are changed on 00080 * exit, and can be used in the next call to DLATME 00081 * to continue the same random number sequence. 00082 * Changed on exit. 00083 * 00084 * D (input/output) DOUBLE PRECISION array, dimension ( N ) 00085 * This array is used to specify the eigenvalues of A. If 00086 * MODE=0, then D is assumed to contain the eigenvalues (but 00087 * see the description of EI), otherwise they will be 00088 * computed according to MODE, COND, DMAX, and RSIGN and 00089 * placed in D. 00090 * Modified if MODE is nonzero. 00091 * 00092 * MODE (input) INTEGER 00093 * On entry this describes how the eigenvalues are to 00094 * be specified: 00095 * MODE = 0 means use D (with EI) as input 00096 * MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND 00097 * MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND 00098 * MODE = 3 sets D(I)=COND**(-(I-1)/(N-1)) 00099 * MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND) 00100 * MODE = 5 sets D to random numbers in the range 00101 * ( 1/COND , 1 ) such that their logarithms 00102 * are uniformly distributed. Each odd-even pair 00103 * of elements will be either used as two real 00104 * eigenvalues or as the real and imaginary part 00105 * of a complex conjugate pair of eigenvalues; 00106 * the choice of which is done is random, with 00107 * 50-50 probability, for each pair. 00108 * MODE = 6 set D to random numbers from same distribution 00109 * as the rest of the matrix. 00110 * MODE < 0 has the same meaning as ABS(MODE), except that 00111 * the order of the elements of D is reversed. 00112 * Thus if MODE is between 1 and 4, D has entries ranging 00113 * from 1 to 1/COND, if between -1 and -4, D has entries 00114 * ranging from 1/COND to 1, 00115 * Not modified. 00116 * 00117 * COND (input) DOUBLE PRECISION 00118 * On entry, this is used as described under MODE above. 00119 * If used, it must be >= 1. Not modified. 00120 * 00121 * DMAX (input) DOUBLE PRECISION 00122 * If MODE is neither -6, 0 nor 6, the contents of D, as 00123 * computed according to MODE and COND, will be scaled by 00124 * DMAX / max(abs(D(i))). Note that DMAX need not be 00125 * positive: if DMAX is negative (or zero), D will be 00126 * scaled by a negative number (or zero). 00127 * Not modified. 00128 * 00129 * EI (input) CHARACTER*1 array, dimension ( N ) 00130 * If MODE is 0, and EI(1) is not ' ' (space character), 00131 * this array specifies which elements of D (on input) are 00132 * real eigenvalues and which are the real and imaginary parts 00133 * of a complex conjugate pair of eigenvalues. The elements 00134 * of EI may then only have the values 'R' and 'I'. If 00135 * EI(j)='R' and EI(j+1)='I', then the j-th eigenvalue is 00136 * CMPLX( D(j) , D(j+1) ), and the (j+1)-th is the complex 00137 * conjugate thereof. If EI(j)=EI(j+1)='R', then the j-th 00138 * eigenvalue is D(j) (i.e., real). EI(1) may not be 'I', 00139 * nor may two adjacent elements of EI both have the value 'I'. 00140 * If MODE is not 0, then EI is ignored. If MODE is 0 and 00141 * EI(1)=' ', then the eigenvalues will all be real. 00142 * Not modified. 00143 * 00144 * RSIGN (input) CHARACTER*1 00145 * If MODE is not 0, 6, or -6, and RSIGN='T', then the 00146 * elements of D, as computed according to MODE and COND, will 00147 * be multiplied by a random sign (+1 or -1). If RSIGN='F', 00148 * they will not be. RSIGN may only have the values 'T' or 00149 * 'F'. 00150 * Not modified. 00151 * 00152 * UPPER (input) CHARACTER*1 00153 * If UPPER='T', then the elements of A above the diagonal 00154 * (and above the 2x2 diagonal blocks, if A has complex 00155 * eigenvalues) will be set to random numbers out of DIST. 00156 * If UPPER='F', they will not. UPPER may only have the 00157 * values 'T' or 'F'. 00158 * Not modified. 00159 * 00160 * SIM (input) CHARACTER*1 00161 * If SIM='T', then A will be operated on by a "similarity 00162 * transform", i.e., multiplied on the left by a matrix X and 00163 * on the right by X inverse. X = U S V, where U and V are 00164 * random unitary matrices and S is a (diagonal) matrix of 00165 * singular values specified by DS, MODES, and CONDS. If 00166 * SIM='F', then A will not be transformed. 00167 * Not modified. 00168 * 00169 * DS (input/output) DOUBLE PRECISION array, dimension ( N ) 00170 * This array is used to specify the singular values of X, 00171 * in the same way that D specifies the eigenvalues of A. 00172 * If MODE=0, the DS contains the singular values, which 00173 * may not be zero. 00174 * Modified if MODE is nonzero. 00175 * 00176 * MODES (input) INTEGER 00177 * 00178 * CONDS (input) DOUBLE PRECISION 00179 * Same as MODE and COND, but for specifying the diagonal 00180 * of S. MODES=-6 and +6 are not allowed (since they would 00181 * result in randomly ill-conditioned eigenvalues.) 00182 * 00183 * KL (input) INTEGER 00184 * This specifies the lower bandwidth of the matrix. KL=1 00185 * specifies upper Hessenberg form. If KL is at least N-1, 00186 * then A will have full lower bandwidth. KL must be at 00187 * least 1. 00188 * Not modified. 00189 * 00190 * KU (input) INTEGER 00191 * This specifies the upper bandwidth of the matrix. KU=1 00192 * specifies lower Hessenberg form. If KU is at least N-1, 00193 * then A will have full upper bandwidth; if KU and KL 00194 * are both at least N-1, then A will be dense. Only one of 00195 * KU and KL may be less than N-1. KU must be at least 1. 00196 * Not modified. 00197 * 00198 * ANORM (input) DOUBLE PRECISION 00199 * If ANORM is not negative, then A will be scaled by a non- 00200 * negative real number to make the maximum-element-norm of A 00201 * to be ANORM. 00202 * Not modified. 00203 * 00204 * A (output) DOUBLE PRECISION array, dimension ( LDA, N ) 00205 * On exit A is the desired test matrix. 00206 * Modified. 00207 * 00208 * LDA (input) INTEGER 00209 * LDA specifies the first dimension of A as declared in the 00210 * calling program. LDA must be at least N. 00211 * Not modified. 00212 * 00213 * WORK (workspace) DOUBLE PRECISION array, dimension ( 3*N ) 00214 * Workspace. 00215 * Modified. 00216 * 00217 * INFO (output) INTEGER 00218 * Error code. On exit, INFO will be set to one of the 00219 * following values: 00220 * 0 => normal return 00221 * -1 => N negative 00222 * -2 => DIST illegal string 00223 * -5 => MODE not in range -6 to 6 00224 * -6 => COND less than 1.0, and MODE neither -6, 0 nor 6 00225 * -8 => EI(1) is not ' ' or 'R', EI(j) is not 'R' or 'I', or 00226 * two adjacent elements of EI are 'I'. 00227 * -9 => RSIGN is not 'T' or 'F' 00228 * -10 => UPPER is not 'T' or 'F' 00229 * -11 => SIM is not 'T' or 'F' 00230 * -12 => MODES=0 and DS has a zero singular value. 00231 * -13 => MODES is not in the range -5 to 5. 00232 * -14 => MODES is nonzero and CONDS is less than 1. 00233 * -15 => KL is less than 1. 00234 * -16 => KU is less than 1, or KL and KU are both less than 00235 * N-1. 00236 * -19 => LDA is less than N. 00237 * 1 => Error return from DLATM1 (computing D) 00238 * 2 => Cannot scale to DMAX (max. eigenvalue is 0) 00239 * 3 => Error return from DLATM1 (computing DS) 00240 * 4 => Error return from DLARGE 00241 * 5 => Zero singular value from DLATM1. 00242 * 00243 * ===================================================================== 00244 * 00245 * .. Parameters .. 00246 DOUBLE PRECISION ZERO 00247 PARAMETER ( ZERO = 0.0D0 ) 00248 DOUBLE PRECISION ONE 00249 PARAMETER ( ONE = 1.0D0 ) 00250 DOUBLE PRECISION HALF 00251 PARAMETER ( HALF = 1.0D0 / 2.0D0 ) 00252 * .. 00253 * .. Local Scalars .. 00254 LOGICAL BADEI, BADS, USEEI 00255 INTEGER I, IC, ICOLS, IDIST, IINFO, IR, IROWS, IRSIGN, 00256 $ ISIM, IUPPER, J, JC, JCR, JR 00257 DOUBLE PRECISION ALPHA, TAU, TEMP, XNORMS 00258 * .. 00259 * .. Local Arrays .. 00260 DOUBLE PRECISION TEMPA( 1 ) 00261 * .. 00262 * .. External Functions .. 00263 LOGICAL LSAME 00264 DOUBLE PRECISION DLANGE, DLARAN 00265 EXTERNAL LSAME, DLANGE, DLARAN 00266 * .. 00267 * .. External Subroutines .. 00268 EXTERNAL DCOPY, DGEMV, DGER, DLARFG, DLARGE, DLARNV, 00269 $ DLASET, DLATM1, DSCAL, XERBLA 00270 * .. 00271 * .. Intrinsic Functions .. 00272 INTRINSIC ABS, MAX, MOD 00273 * .. 00274 * .. Executable Statements .. 00275 * 00276 * 1) Decode and Test the input parameters. 00277 * Initialize flags & seed. 00278 * 00279 INFO = 0 00280 * 00281 * Quick return if possible 00282 * 00283 IF( N.EQ.0 ) 00284 $ RETURN 00285 * 00286 * Decode DIST 00287 * 00288 IF( LSAME( DIST, 'U' ) ) THEN 00289 IDIST = 1 00290 ELSE IF( LSAME( DIST, 'S' ) ) THEN 00291 IDIST = 2 00292 ELSE IF( LSAME( DIST, 'N' ) ) THEN 00293 IDIST = 3 00294 ELSE 00295 IDIST = -1 00296 END IF 00297 * 00298 * Check EI 00299 * 00300 USEEI = .TRUE. 00301 BADEI = .FALSE. 00302 IF( LSAME( EI( 1 ), ' ' ) .OR. MODE.NE.0 ) THEN 00303 USEEI = .FALSE. 00304 ELSE 00305 IF( LSAME( EI( 1 ), 'R' ) ) THEN 00306 DO 10 J = 2, N 00307 IF( LSAME( EI( J ), 'I' ) ) THEN 00308 IF( LSAME( EI( J-1 ), 'I' ) ) 00309 $ BADEI = .TRUE. 00310 ELSE 00311 IF( .NOT.LSAME( EI( J ), 'R' ) ) 00312 $ BADEI = .TRUE. 00313 END IF 00314 10 CONTINUE 00315 ELSE 00316 BADEI = .TRUE. 00317 END IF 00318 END IF 00319 * 00320 * Decode RSIGN 00321 * 00322 IF( LSAME( RSIGN, 'T' ) ) THEN 00323 IRSIGN = 1 00324 ELSE IF( LSAME( RSIGN, 'F' ) ) THEN 00325 IRSIGN = 0 00326 ELSE 00327 IRSIGN = -1 00328 END IF 00329 * 00330 * Decode UPPER 00331 * 00332 IF( LSAME( UPPER, 'T' ) ) THEN 00333 IUPPER = 1 00334 ELSE IF( LSAME( UPPER, 'F' ) ) THEN 00335 IUPPER = 0 00336 ELSE 00337 IUPPER = -1 00338 END IF 00339 * 00340 * Decode SIM 00341 * 00342 IF( LSAME( SIM, 'T' ) ) THEN 00343 ISIM = 1 00344 ELSE IF( LSAME( SIM, 'F' ) ) THEN 00345 ISIM = 0 00346 ELSE 00347 ISIM = -1 00348 END IF 00349 * 00350 * Check DS, if MODES=0 and ISIM=1 00351 * 00352 BADS = .FALSE. 00353 IF( MODES.EQ.0 .AND. ISIM.EQ.1 ) THEN 00354 DO 20 J = 1, N 00355 IF( DS( J ).EQ.ZERO ) 00356 $ BADS = .TRUE. 00357 20 CONTINUE 00358 END IF 00359 * 00360 * Set INFO if an error 00361 * 00362 IF( N.LT.0 ) THEN 00363 INFO = -1 00364 ELSE IF( IDIST.EQ.-1 ) THEN 00365 INFO = -2 00366 ELSE IF( ABS( MODE ).GT.6 ) THEN 00367 INFO = -5 00368 ELSE IF( ( MODE.NE.0 .AND. ABS( MODE ).NE.6 ) .AND. COND.LT.ONE ) 00369 $ THEN 00370 INFO = -6 00371 ELSE IF( BADEI ) THEN 00372 INFO = -8 00373 ELSE IF( IRSIGN.EQ.-1 ) THEN 00374 INFO = -9 00375 ELSE IF( IUPPER.EQ.-1 ) THEN 00376 INFO = -10 00377 ELSE IF( ISIM.EQ.-1 ) THEN 00378 INFO = -11 00379 ELSE IF( BADS ) THEN 00380 INFO = -12 00381 ELSE IF( ISIM.EQ.1 .AND. ABS( MODES ).GT.5 ) THEN 00382 INFO = -13 00383 ELSE IF( ISIM.EQ.1 .AND. MODES.NE.0 .AND. CONDS.LT.ONE ) THEN 00384 INFO = -14 00385 ELSE IF( KL.LT.1 ) THEN 00386 INFO = -15 00387 ELSE IF( KU.LT.1 .OR. ( KU.LT.N-1 .AND. KL.LT.N-1 ) ) THEN 00388 INFO = -16 00389 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN 00390 INFO = -19 00391 END IF 00392 * 00393 IF( INFO.NE.0 ) THEN 00394 CALL XERBLA( 'DLATME', -INFO ) 00395 RETURN 00396 END IF 00397 * 00398 * Initialize random number generator 00399 * 00400 DO 30 I = 1, 4 00401 ISEED( I ) = MOD( ABS( ISEED( I ) ), 4096 ) 00402 30 CONTINUE 00403 * 00404 IF( MOD( ISEED( 4 ), 2 ).NE.1 ) 00405 $ ISEED( 4 ) = ISEED( 4 ) + 1 00406 * 00407 * 2) Set up diagonal of A 00408 * 00409 * Compute D according to COND and MODE 00410 * 00411 CALL DLATM1( MODE, COND, IRSIGN, IDIST, ISEED, D, N, IINFO ) 00412 IF( IINFO.NE.0 ) THEN 00413 INFO = 1 00414 RETURN 00415 END IF 00416 IF( MODE.NE.0 .AND. ABS( MODE ).NE.6 ) THEN 00417 * 00418 * Scale by DMAX 00419 * 00420 TEMP = ABS( D( 1 ) ) 00421 DO 40 I = 2, N 00422 TEMP = MAX( TEMP, ABS( D( I ) ) ) 00423 40 CONTINUE 00424 * 00425 IF( TEMP.GT.ZERO ) THEN 00426 ALPHA = DMAX / TEMP 00427 ELSE IF( DMAX.NE.ZERO ) THEN 00428 INFO = 2 00429 RETURN 00430 ELSE 00431 ALPHA = ZERO 00432 END IF 00433 * 00434 CALL DSCAL( N, ALPHA, D, 1 ) 00435 * 00436 END IF 00437 * 00438 CALL DLASET( 'Full', N, N, ZERO, ZERO, A, LDA ) 00439 CALL DCOPY( N, D, 1, A, LDA+1 ) 00440 * 00441 * Set up complex conjugate pairs 00442 * 00443 IF( MODE.EQ.0 ) THEN 00444 IF( USEEI ) THEN 00445 DO 50 J = 2, N 00446 IF( LSAME( EI( J ), 'I' ) ) THEN 00447 A( J-1, J ) = A( J, J ) 00448 A( J, J-1 ) = -A( J, J ) 00449 A( J, J ) = A( J-1, J-1 ) 00450 END IF 00451 50 CONTINUE 00452 END IF 00453 * 00454 ELSE IF( ABS( MODE ).EQ.5 ) THEN 00455 * 00456 DO 60 J = 2, N, 2 00457 IF( DLARAN( ISEED ).GT.HALF ) THEN 00458 A( J-1, J ) = A( J, J ) 00459 A( J, J-1 ) = -A( J, J ) 00460 A( J, J ) = A( J-1, J-1 ) 00461 END IF 00462 60 CONTINUE 00463 END IF 00464 * 00465 * 3) If UPPER='T', set upper triangle of A to random numbers. 00466 * (but don't modify the corners of 2x2 blocks.) 00467 * 00468 IF( IUPPER.NE.0 ) THEN 00469 DO 70 JC = 2, N 00470 IF( A( JC-1, JC ).NE.ZERO ) THEN 00471 JR = JC - 2 00472 ELSE 00473 JR = JC - 1 00474 END IF 00475 CALL DLARNV( IDIST, ISEED, JR, A( 1, JC ) ) 00476 70 CONTINUE 00477 END IF 00478 * 00479 * 4) If SIM='T', apply similarity transformation. 00480 * 00481 * -1 00482 * Transform is X A X , where X = U S V, thus 00483 * 00484 * it is U S V A V' (1/S) U' 00485 * 00486 IF( ISIM.NE.0 ) THEN 00487 * 00488 * Compute S (singular values of the eigenvector matrix) 00489 * according to CONDS and MODES 00490 * 00491 CALL DLATM1( MODES, CONDS, 0, 0, ISEED, DS, N, IINFO ) 00492 IF( IINFO.NE.0 ) THEN 00493 INFO = 3 00494 RETURN 00495 END IF 00496 * 00497 * Multiply by V and V' 00498 * 00499 CALL DLARGE( N, A, LDA, ISEED, WORK, IINFO ) 00500 IF( IINFO.NE.0 ) THEN 00501 INFO = 4 00502 RETURN 00503 END IF 00504 * 00505 * Multiply by S and (1/S) 00506 * 00507 DO 80 J = 1, N 00508 CALL DSCAL( N, DS( J ), A( J, 1 ), LDA ) 00509 IF( DS( J ).NE.ZERO ) THEN 00510 CALL DSCAL( N, ONE / DS( J ), A( 1, J ), 1 ) 00511 ELSE 00512 INFO = 5 00513 RETURN 00514 END IF 00515 80 CONTINUE 00516 * 00517 * Multiply by U and U' 00518 * 00519 CALL DLARGE( N, A, LDA, ISEED, WORK, IINFO ) 00520 IF( IINFO.NE.0 ) THEN 00521 INFO = 4 00522 RETURN 00523 END IF 00524 END IF 00525 * 00526 * 5) Reduce the bandwidth. 00527 * 00528 IF( KL.LT.N-1 ) THEN 00529 * 00530 * Reduce bandwidth -- kill column 00531 * 00532 DO 90 JCR = KL + 1, N - 1 00533 IC = JCR - KL 00534 IROWS = N + 1 - JCR 00535 ICOLS = N + KL - JCR 00536 * 00537 CALL DCOPY( IROWS, A( JCR, IC ), 1, WORK, 1 ) 00538 XNORMS = WORK( 1 ) 00539 CALL DLARFG( IROWS, XNORMS, WORK( 2 ), 1, TAU ) 00540 WORK( 1 ) = ONE 00541 * 00542 CALL DGEMV( 'T', IROWS, ICOLS, ONE, A( JCR, IC+1 ), LDA, 00543 $ WORK, 1, ZERO, WORK( IROWS+1 ), 1 ) 00544 CALL DGER( IROWS, ICOLS, -TAU, WORK, 1, WORK( IROWS+1 ), 1, 00545 $ A( JCR, IC+1 ), LDA ) 00546 * 00547 CALL DGEMV( 'N', N, IROWS, ONE, A( 1, JCR ), LDA, WORK, 1, 00548 $ ZERO, WORK( IROWS+1 ), 1 ) 00549 CALL DGER( N, IROWS, -TAU, WORK( IROWS+1 ), 1, WORK, 1, 00550 $ A( 1, JCR ), LDA ) 00551 * 00552 A( JCR, IC ) = XNORMS 00553 CALL DLASET( 'Full', IROWS-1, 1, ZERO, ZERO, A( JCR+1, IC ), 00554 $ LDA ) 00555 90 CONTINUE 00556 ELSE IF( KU.LT.N-1 ) THEN 00557 * 00558 * Reduce upper bandwidth -- kill a row at a time. 00559 * 00560 DO 100 JCR = KU + 1, N - 1 00561 IR = JCR - KU 00562 IROWS = N + KU - JCR 00563 ICOLS = N + 1 - JCR 00564 * 00565 CALL DCOPY( ICOLS, A( IR, JCR ), LDA, WORK, 1 ) 00566 XNORMS = WORK( 1 ) 00567 CALL DLARFG( ICOLS, XNORMS, WORK( 2 ), 1, TAU ) 00568 WORK( 1 ) = ONE 00569 * 00570 CALL DGEMV( 'N', IROWS, ICOLS, ONE, A( IR+1, JCR ), LDA, 00571 $ WORK, 1, ZERO, WORK( ICOLS+1 ), 1 ) 00572 CALL DGER( IROWS, ICOLS, -TAU, WORK( ICOLS+1 ), 1, WORK, 1, 00573 $ A( IR+1, JCR ), LDA ) 00574 * 00575 CALL DGEMV( 'C', ICOLS, N, ONE, A( JCR, 1 ), LDA, WORK, 1, 00576 $ ZERO, WORK( ICOLS+1 ), 1 ) 00577 CALL DGER( ICOLS, N, -TAU, WORK, 1, WORK( ICOLS+1 ), 1, 00578 $ A( JCR, 1 ), LDA ) 00579 * 00580 A( IR, JCR ) = XNORMS 00581 CALL DLASET( 'Full', 1, ICOLS-1, ZERO, ZERO, A( IR, JCR+1 ), 00582 $ LDA ) 00583 100 CONTINUE 00584 END IF 00585 * 00586 * Scale the matrix to have norm ANORM 00587 * 00588 IF( ANORM.GE.ZERO ) THEN 00589 TEMP = DLANGE( 'M', N, N, A, LDA, TEMPA ) 00590 IF( TEMP.GT.ZERO ) THEN 00591 ALPHA = ANORM / TEMP 00592 DO 110 J = 1, N 00593 CALL DSCAL( N, ALPHA, A( 1, J ), 1 ) 00594 110 CONTINUE 00595 END IF 00596 END IF 00597 * 00598 RETURN 00599 * 00600 * End of DLATME 00601 * 00602 END